[1]张亚辉,刘勇,韩乃杰,等.旋喷桩加固黄土区重载铁路隧道基底效果分析[J].高速铁路技术,2024,15(06):104-110.[doi:10.12098/j.issn.1674-8247.2024.06.017]
 ZHANG Yahui LIU Yong HAN Naijie XU Qiang.Analysis of the Effect of Jet Grouting Pile Reinforcement on the Tunnel Foundation of Heavy-haul Railways in Loess Areas[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(06):104-110.[doi:10.12098/j.issn.1674-8247.2024.06.017]
点击复制

旋喷桩加固黄土区重载铁路隧道基底效果分析()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
15卷
期数:
2024年06期
页码:
104-110
栏目:
勘察设计
出版日期:
2024-12-15

文章信息/Info

Title:
Analysis of the Effect of Jet Grouting Pile Reinforcement on the Tunnel Foundation of Heavy-haul Railways in Loess Areas
文章编号:
1674-8247(2024)06-0104-07
作者:
张亚辉12刘勇24韩乃杰3徐强2
(1.河北城乡建设学校, 石家庄 050031; 2.石家庄铁道大学道路与铁道工程安全保障教育部重点实验室, 石家庄 050043; 3.河北交通投资集团有限公司, 石家庄 050000; 4.中铁二院工程集团有限责任公司, 成都 610031)
Author(s):
ZHANG Yahui12 LIU Yong24 HAN Naijie3 XU Qiang2
(1.Hebei Urban and Rural Construction School, Shijiazhuang 050031, China; 2.MOE Key Laboratory of Roads and Railway Engineering Safety Control, Shijiazhuang Tiedao University, Shijiazhuang 050043,China; 3.Hebei Transportation Investment Group Co.,Ltd., Sh
关键词:
重载铁路 隧道 黄土 加固 动力响应
Keywords:
heavy-haul railway tunnel loess reinforcement dynamic response
分类号:
U45
DOI:
10.12098/j.issn.1674-8247.2024.06.017
文献标志码:
A
摘要:
黄土地区土体因其湿陷性较大,导致基底稳定性较差,道床、基底等均可能在列车的动力振动作用下发生基底下沉、开裂、翻浆冒泥等病害,这在一定程度上遏制了重载铁路的发展,影响了列车的运行安全。依托山西中南部铁路通道石楼隧道,建立三维有限元模型,针对旋喷桩加固效果进行计算分析,首先针对在隧道施工期间旋喷桩的加固效果进行计算,结果表明:在无旋喷桩加固时,仰拱部分最大隆起量为16.3 cm,采用旋喷桩加固后,最大隆起量降低为5.66 cm,且仰拱各测点的变形量的变化幅度减小,说明旋喷桩不仅起到了减小围岩变形的作用,同时也提高了围岩稳定性。其次对运营期间旋喷桩对于改善仰拱动力响应效果方面进行了计算分析,结果表明:当采用旋喷桩时,仰拱中心位置最大位移振幅由2.51 cm降低至 0.69 cm,降幅达72.5%; 加速度响应方面,仰拱中心位置的加速度峰值最大,其值为3.29 m/s-2,较无加固时的5.11 m/s-2降低了近36%。
Abstract:
The soil in loess areas exhibits significant collapsibility, leading to poor foundation stability. Components such as the track bed and foundation may experience settlement, cracking, mud pumping, and other defects under the dynamic vibration of trains. These issues have hindered the development of heavy-haul railways to a certain extent and compromised train operation safety. Based on the Shilou Tunnel of the Central and Southern Shanxi Railway Corridor, a three-dimensional finite element model was established to analyze the reinforcement effectiveness of jet grouting piles. Initially, the reinforcement effect of jet grouting piles during tunnel construction was calculated. The results indicated that without jet grouting pile reinforcement, the maximum uplift of the inverted arch was 16.3 cm, which was reduced to 5.66 cm after reinforcement. Additionally, the variation amplitude of deformation at various measurement points on the inverted arch decreased, suggesting that jet grouting piles not only reduced surrounding rock deformation but also improved its stability. Furthermore, this paper conducted computational analysis on the effectiveness of jet grouting piles in improving the dynamic response of the inverted arch during operational periods. The results showed that when jet grouting piles were used, the maximum displacement amplitude at the center of the inverted arch decreased from 2.51 cm to 0.69 cm, representing a 72.5% reduction. In terms of acceleration response, the peak acceleration at the center of the inverted arch was the highest, with a value of 3.29 m/s-2, which was nearly 36% lower than the 5.11 m/s-2 observed without reinforcement.

参考文献/References:

[1] 刘宝, 李丹峰. 重载铁路黄土路堑三联生态护坡入渗稳定性及应用研究[J]. 铁道勘察, 2022, 48(3): 57-62, 68.
LIU Bao, LI Danfeng. Infiltration Stability Analysis and Practical Application of Triple Ecological Protection for Loess Cutting Slope of the Heavy-haul Railway[J]. Railway Investigation and Surveying, 2022, 48(3): 57-62, 68.
[2] 王虎. 湿陷性黄土隧道重载条件下对隧道结构下部的影响分析[J]. 路基工程, 2023(6): 80-85.
WANG Hu. Analysis of Influence of Collapsible Loess Tunnel on the Lower Part of the Tunnel Structure under Heavy Load Conditions[J]. Subgrade Engineering, 2023(6): 80-85.
[3] 郑卫东. 重载铁路湿陷性黄土路基工程施工技术探讨[J]. 技术与市场, 2020, 27(9): 80-81.
ZHENG Weidong. Discussion on Construction Technology of Collapsible Loess Subgrade Engineering of Heavy-haul Railway[J]. Technology and Market, 2020, 27(9): 80-81.
[4] 杨碧峰, 杨晓华. 超长旋喷桩在黄土隧道软基加固中的应用[J]. 公路交通科技(应用技术版), 2007(5): 16-18.
YANG Bifeng, YANG Xiaohua. Application of Super-long Jet Grouting Pile in Soft Foundation Reinforcement of Loess Tunnel[J]. Journal of Highway and Transportation Research and Development, 2007(5): 16-18.
[5] 李小杰. 高压旋喷桩复合地基承载力与沉降计算方法分析[J]. 岩土力学, 2004, 25(9): 1499-1502.
LI Xiaojie. Analysis of Calculation Methods for Bearing Capacity and Settlement of High-pressure Chemical Churning Pile Composite Foundation[J]. Rock and Soil Mechanics, 2004, 25(9): 1499-1502.
[6] 朱丽刚. 浅埋大断面隧道黄土地层注浆预加固技术应用[J]. 新乡学院学报, 2023, 40(12): 49-53.
ZHU Ligang. Application of Grouting Pre-reinforcement Technology in Loess Stratum of Shallow Buried Large Section Tunnel[J]. Journal of Xinxiang University, 2023, 40(12): 49-53.
[7] WONGSAROJ J, SOGA K, MAIR R J. Tunnelling-induced Consolidation Settlements in London Clay[J]. Géotechnique, 2013, 63(13): 1103-1115.
[8] 方勇, 郭建宁, 康海波, 等. 富水地层公路隧道衬砌背后空洞对结构受力的影响[J]. 岩石力学与工程学报, 2016, 35(8): 1648-1658.
FANG Yong, GUO Jianning, KANG Haibo, et al. Influence of Voids Behind Lining on the Mechanical Behavior of Lining Structure of Highway Tunnel in Watery Strata[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(8): 1648-1658.
[9] 王瑞. 列车荷载下回填黄土铁路路堤的动力响应及其长期强度与沉降研究[D]. 西安: 长安大学, 2019.
WANG Rui. Study on Dynamic Response, Long-term Strength and Settlement of Railway Embankment Filled with Loess under Train Load [D]. Xi'an: Changan University, 2019.
[10] 孙文. 黄土隧道洞口段地震动力失稳机制及对策研究[D]. 兰州: 兰州交通大学, 2021.
SUN Wen. Study on Seismic Dynamic Instability Mechanism and Countermeasures of Loess Tunnel Entrance Section [D]. Lanzhou: Lanzhou Jiatong University, 2021.
[11] 梁金平. 地基加固成桩对邻近高速铁路变形影响研究[J]. 高速铁路技术, 2023, 14(5): 13-17, 87.
LIANG Jinping. A Study on Impact of Foundation Reinforcement Piles on Deformation of Adjacent High-speed Railways[J]. High Speed Railway Technology, 2023, 14(5): 13-17, 87.
[12] 陈朝阳. 黄土地区浅埋铁路隧道施工控制关键技术研究[D]. 石家庄铁道大学, 2020.
CHEN Chaoyang. Research on Key Technology of Construction Control of Shallow Buried Railway Tunnel in Loess Area[D]. Shijiazhuang Railway University, 2020.
[13] 丁祖德. 高速铁路隧道基底软岩动力特性及结构安全性研究[D]. 长沙: 中南大学, 2012.
DING Zude. Study on Dynamic Characteristics and Structural Safety of Soft Rock at the Base of High-speed Railway Tunnel[D]. Changsha: Central South University, 2012.
[14] 张亚辉, 安洋, 郭唯伟, 等. 围岩空洞对重载铁路隧道动力稳定性的影响[J]. 铁道勘察, 2023, 49(4): 135-141.
ZHANG Yahui, AN Yang, GUO Weiwei, et al. Influence of Surrounding Rock Voids on the Dynamic Stability of Heavy-haul Railway Tunnels[J]. Railway Investigation and Surveying, 2023, 49(4): 135-141.
[15] 罗军, 王炳龙, 陕耀, 等. 邻近高速铁路单根高压旋喷桩施工对周围土体的变形影响[J]. 高速铁路技术, 2023, 14(1): 13-19.
LUO Jun, WANG Binglong, SHAN Yao, et al. Deformation Impact of Construction of a Single High-pressure Jet Grouting Pile in the Vicinity of a High-speed Railway on Surrounding Soil Mass[J]. High Speed Railway Technology, 2023, 14(1): 13-19.
[16] Yahui Z. Prediction Model of Surrounding Rock Deformation in Double-continuous-arch Tunnel based on the ABC-WNN [J]. Railway Sciences, 2024, 3(6): 717-730.

相似文献/References:

[1]张 巍.重载铁路煤炭装载系统与车站布局探讨[J].高速铁路技术,2017,8(06):50.[doi:10.12098/j.issn.1674-8247.2017.06.011]
 ZHANG Wei.Discussionon Coal Loading System and Station Layout of Heavy-haul Railway[J].HIGH SPEED RAILWAY TECHNOLOGY,2017,8(06):50.[doi:10.12098/j.issn.1674-8247.2017.06.011]
[2]冉惟可.电气化铁路隧道内接触网电缆挂架优化及安装形式研究[J].高速铁路技术,2023,14(01):43.[doi:10.12098/j.issn.1674-8247.2023.01.008]
 RAN Weike.A Study on Optimization and Installation Form of Cable Hanger of Overhead Contact System in Electrified Railway Tunnels[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(06):43.[doi:10.12098/j.issn.1674-8247.2023.01.008]
[3]曹 博,李明,刘俊俊,等.重载铁路路堑边坡极限状态法稳定性分析研究[J].高速铁路技术,2023,14(05):56.[doi:10.12098/j.issn.1674-8247.2023.05.011]
 CAO Bo,LI Ming,LIU Junjun,et al.A Study on Stability Analysis for Cutting Slope of Heavy Haul Railway by Limit State Method[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(06):56.[doi:10.12098/j.issn.1674-8247.2023.05.011]

备注/Memo

备注/Memo:
收稿日期:2024-01-30
作者简介:张亚辉(1989-),男,副教授。
基金项目:河北省自然科学基金资助项目(E2020210068); 中铁二院工程集团有限责任公司院控项目(KYY2018071(18-20)); 河北省大学生创新项目(S202010107080)
更新日期/Last Update: 2024-12-15