[1]邢雪生,张小虎.多维灰色模型GM(1, N)在铁路物流中心运量预测中的应用[J].高速铁路技术,2025,(01):63-67,73.[doi:10.12098/j.issn.1674-8247.2025.01.010]
 XING Xuesheng ZHANG Xiaohu.Application of GM(1, N)Model in the Prediction of Railway Logistics Centers Freight Volume[J].HIGH SPEED RAILWAY TECHNOLOGY,2025,(01):63-67,73.[doi:10.12098/j.issn.1674-8247.2025.01.010]
点击复制

多维灰色模型GM(1, N)在铁路物流中心运量预测中的应用()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
期数:
2025年01期
页码:
63-67,73
栏目:
研究创新
出版日期:
2025-02-20

文章信息/Info

Title:
Application of GM(1, N)Model in the Prediction of Railway Logistics Centers Freight Volume
文章编号:
1674-8247(2025)01-0063-05
作者:
邢雪生张小虎
(中铁工程设计咨询集团有限公司, 北京 100055)
Author(s):
XING Xuesheng ZHANG Xiaohu
(China Railway Engineering Design and Consulting Group Co., Ltd., Beijing 100055,China)
关键词:
铁路物流中心 运量预测 多维灰色模型 灰色关联度 熵权理论
Keywords:
railway logistics center freight volume prediction GM(1N)Model grey correlation degree entropy weight theory
分类号:
U294
DOI:
10.12098/j.issn.1674-8247.2025.01.010
文献标志码:
A
摘要:
在深化铁路货运改革、建设现代化大物流的发展背景下,为完善铁路物流中心运量预测方法、提高货运量预测精度、推进铁路物流系统建设,本文在利用灰色系统理论进行货运量预测过程中,结合灰色关联度理论、熵权理论,对多维灰色模型GM(1,N)在铁路物流中心货运量预测方面进行深化拓展。结果表明:该模型能够依靠小样本进行原始数据重生成、预测发展趋势,对复杂非线性因素影响下的货运量预测具有较高的精确度,能够为铁路物流行业科学发展提供参考依据。
Abstract:
Against the backdrop of deepening reforms in railway freight transportation and the development of modern logistics, this paper aimed to improve the freight volume forecasting methods for railway logistics centers, enhance the accuracy of freight volume forecasting, and promote the construction of railway logistics systems. In the process of utilizing grey system theory for freight volume forecasting, this paper expanded the application of the multi-dimensional grey model GM(1,N)in freight volume forecasting for railway logistics centers by integrating grey correlation degree theory and entropy weight theory. The results indicate that this model can regenerate original data based on small samples and predict development trends, thus achieving high accuracy in freight volume forecasting under the influence of complex nonlinear factors. It provides a reference for the scientific development of the railway logistics industry.

参考文献/References:

[1] 许宗芳, 许钟匀. 关于货运设施适应性问题的探讨[J]. 高速铁路技术, 2020,(S1): 60-62.
XU Zongfang, XU Zhongyun. Study on Adaptability of Freight Facilities in Railway Freight Increment Action Plan[J]. High Speed Railway Technology, 2020,(S1): 60-62.
[2] 赵旭. 基于“四阶段”模型的高速铁路货运需求预测[J]. 高速铁路技术, 2024, 15(6): 27-33.
ZHAO Xu. High-speed Railway Freight Demand Forecasting Based on the “Four-Stage” Model[J]. High Speed Railway Technology, 2024, 15(6): 27-33.
[3] KUREMOTO T, KIMURA S, KOBAYASHI K, et al. Time Series Forecasting Using a Deep Belief Network with Restricted Boltzmann Machines[J]. Neurocomputing, 2014, 137: 47-56.
[4] FAGHIHI V, REINSCHMIDT K F, KANG J H. Construction Scheduling Using Genetic Algorithm Based on Building Information Model[J]. Expert Systems with Applications, 2014, 41(16): 7565-7578.
[5] 段晓晨, 郭兰英, 张新宁. 新建高铁工程非线性造价估算方法研究[J]. 铁道学报, 2013, 35(10): 114-122.
DUAN Xiaochen, GUO Lanying, ZHANG Xinning. Research on Nonlinear Estimating Methods of Whole Life-cycle Cost for China High-speed Railway Project[J]. Journal of the China Railway Society, 2013, 35(10): 114-122.
[6] 裴同松, 裴彧. 基于马尔科夫链-BP神经网络模型对公路运量的预测研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(2): 35-41.
PEI Tongsong, PEI Yu. Prediction of Highway Traffic Volume Based on Markov Chain-BP Neural Network Model[J]. Journal of Chongqing Jiaotong University(Natural Science), 2021, 40(2): 35-41.
[7] 杨飞. 基于改进灰色预测模型的铁路客运量预测研究[J]. 高速铁路技术, 2024, 15(5): 83-86, 112.
YANG Fei. Study on Railway Passenger Volume Forecast Based on an Improved Grey Forecasting Model [J]. High Speed Railway Technology, 2024, 15(5): 83-86, 112.
[8] LIU Sifeng,Forrest J. The Role and Position of Grey System Theory in Science Development [J]. The Journal of Grey System, 1997, 9(4): 351-356.
[9] 周伟, 方志耕. 非线性优化GM(1, N)模型及其应用研究[J]. 系统工程与电子技术, 2010, 32(2): 317-320, 354.
ZHOU Wei, FANG Zhigeng. Nonlinear Optimization Method of Gray GM(1, N)Model and Application[J]. Systems Engineering and Electronics, 2010, 32(2): 317-320, 354.
[10] 赵莉琴, 刘敬严. 基于灰色GM(1, n)模型的河北物流货运量预测[J]. 石家庄铁道大学学报(社会科学版), 2015, 9(2): 10-15.
ZHAO Liqin, LIU Jingyan. Forecast of Logistics Freight Volume in Hebei Province Based on Grey GM(1, n)Model[J]. Journal of Shijiazhuang Tiedao University(Social Science Edition), 2015, 9(2): 10-15.
[11] 左小雨, 黄先军. 基于灰色预测模型对我国铁路货运量的预测[J]. 物流科技, 2016, 39(8): 82-84.
ZUO Xiaoyu, HUANG Xianjun. Prediction of Railway Freight Volume Based on Grey Prediction Model in China[J]. Logistics Sci-Tech, 2016, 39(8): 82-84.
[12] 李小霞,同小军,陈绵云.多因子灰色MGMp(1,n)优化模型[J].系统工程理论与实践, 2003, 23(4):47-51.
LI Xiaoxia,TONG Xiaojun,CHEN Mianyun. MGMp(1,n)Optimization Model[J]. System Engineering Theory and Practice, 2003, 23(4):47-51.
[13] 张勇军, 石辉, 梁锦照, 等. 基于AHP灰关联及GM(1,N)建模的静态网损因素分析[J]. 华南理工大学学报(自然科学版), 2011, 39(3): 62-66.
ZHANG Yongjun, SHI Hui, LIANG Jinzhao, et al. Analysis of Static Loss Factors Based on AHP-Gray Relation and GM( 1,N)Model[J]. Journal of South China University of Technology(Natural Science Edition), 2011, 39(3): 62-66.
[14] 邓文青. 铁路现代物流中心货运量预测及布局规划[D]. 长春: 吉林大学, 2018.
DENG Wenqing. Freight Volume Forecast and Layout Planning of Railway Modern Logistics Center[D]. Changchun: Jilin University, 2018.
[15] 李瑞, 代明睿, 李凤姿. 基于灰色关联度的铁路货运量关键影响因子选取方法研究[J]. 铁道货运, 2015, 33(11): 11-14.
LI Rui, DAI Mingrui, LI Fengzi. Research on Selection Method of Key Influencing Factors of Railway Freight Volume Based on Grey Correlation Degree[J]. Railway Freight Transport, 2015, 33(11): 11-14.
[16] 邢雪生, 张丹丹. 熵权-双基点法在枢纽方案比选中的应用[J]. 铁道勘察, 2018, 44(5): 90-94.
XING Xuesheng, ZHANG Dandan. Application of the Entropy-weighted and Double Base Points in Determining the Scheme for Railway Leading to Terminal[J]. Railway Investigation and Surveying, 2018, 44(5): 90-94.

备注/Memo

备注/Memo:
收稿日期:2023-12-20
作者简介:邢雪生(1989-),男,工程师。
更新日期/Last Update: 2025-02-20