[1]陈桂龙,孙新宇.轻钢建筑屋面板连接件破坏临界风速计算方法研究[J].高速铁路技术,2025,(02):57-61.[doi:10.12098/j.issn.1674-8247.2025.02.009]
 CHEN Guilong SUN Xinyu.Research on Calculation Methods for Critical Wind Velocity of Lightweight Steel Buildings Roof Panel Connectors Failure[J].HIGH SPEED RAILWAY TECHNOLOGY,2025,(02):57-61.[doi:10.12098/j.issn.1674-8247.2025.02.009]
点击复制

轻钢建筑屋面板连接件破坏临界风速计算方法研究()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
期数:
2025年02期
页码:
57-61
栏目:
出版日期:
2025-04-20

文章信息/Info

Title:
Research on Calculation Methods for Critical Wind Velocity of Lightweight Steel Buildings Roof Panel Connectors Failure
文章编号:
1674-8247(2025)02-0057-05
作者:
陈桂龙1 孙新宇2
(1.西南交通大学, 成都 610031; 2.中国国家铁路集团有限公司, 北京 100844)
Author(s):
CHEN Guilong1 SUN Xinyu2
(1.Southwest Jiaotong University, Chengdu 610031,China; 2.China State Railway Group Corporation, Beijing 100844,China)
关键词:
自攻螺钉连接 临界风速计算 动态修正系数 抗风设计优化
Keywords:
self-tapping screw connections critical wind velocity calculation dynamic amplification factor wind-resistant design optimization
分类号:
TU392.5
DOI:
10.12098/j.issn.1674-8247.2025.02.009
文献标志码:
A
摘要:
随着我国高速铁路网的快速发展,铁路沿线轻钢建筑围护结构彩钢板在大风天气下频繁脱落,严重威胁高速铁路运营安全。本文针对自攻螺钉连接件的风致破坏问题,提出一种融合静、动态风压特性的临界风速计算方法。通过理论推导,建立风压-承载力映射模型,引入动态修正系数 β 量化台风脉动效应, 揭示了螺钉直径d、板厚t与支座间距s对临界风速的非线性影响。结果表明, d 从4.8 mm增至5.5 mm可提升风速18.3%,t从0.8 mm增至1.0 mm风速提升22.1%,而s从1.5 m增至2.0 m则风速降低34.7%。结合工程验证,提出区域性设计指南,如台风区采用S12.8级螺钉(d ≥ 6.0 mm)、Q550级钢板(t ≥ 1.2 mm)及加密支座间距(s ≤ 1.2 m),使临界风速提升至47.8 m/s(14级台风)。该方法突破传统静态模型局限,为高速铁路沿线轻钢建筑抗风设计与安全评估提供理论支撑。
Abstract:
With the rapid expansion of China’s high-speed railway network, the frequent detachment of color steel plate from light steel building envelope systems along railway corridors under high-wind conditions has posed severe threats to operational safety. This paper addressed the wind-induced failure mechanisms of self-tapping screw connections and proposed a critical wind velocity calculation method integrating static and dynamic wind pressure characteristics. A wind pressure-bearing capacity mapping model was established through theoretical derivation, incorporating a dynamic amplification factor β to quantify typhoon-induced pulsation effects. The nonlinear effects of screw diameter d, sheathing thickness t, and support spacing s on critical wind velocity were elucidated. Results demonstrate that increasing d from 4.8 mm to 5.5 mm elevates wind resistance by 18.3%, while enhancing t from 0.8 mm to 1.0 mm yields a 22.1% improvement. Conversely, expanding s from 1.5 m to 2.0 m reduces critical wind velocity by 34.7%. Validated through engineering case studies, regional design guidelines were formulated, recommending S12.8-grade screws(d ≥ 6.0 mm), Q550-grade steel plate(t ≥ 1.2 mm), and reduced support spacing(s ≤ 1.2 m)in typhoon-prone zones, achieving a critical wind velocity of 47.8 m/s(Category 14 typhoon). This methodology overcomes limitations of conventional static models, providing theoretical foundations for wind-resistant design and safety assessment of light steel structures along high-speed railways.

参考文献/References:

[1] 张曼, 韩振林, 孙健, 等. 高温下自攻螺钉搭接连接薄钢板抗剪性能研究[J]. 建筑钢结构进展, 2020, 22(5): 108-117.
ZHANG Man, HAN Zhenlin, SUN Jian, et al. Research on Shear Behavior of Screwed Shear LappedConnections of Thin Steel Sheet at Elevated Temperature[J]. Progress in Steel Building Structures, 2020, 22(5): 108-117.
[2] 邓露, 刘文豪, 刘定荣, 等. 自攻螺钉双面剪切连接抗剪性能研究[J]. 工程力学, 2022, 39(9): 81-94.
DENG Lu, LIU Wenhao, LIU Dingrong, et al. Research on the Shear Performance of Self-drilling ScrewDouble-sided Shear Connections[J]. Engineering Mechanics, 2022, 39(9): 81-94.
[3] 张文莹, 刘希宇, 赵金友, 等. 冷弯型钢自攻螺钉连接抗拉承载力设计方法比较分析[J]. 北京工业大学学报, 2022, 48(1): 95-104.
ZHANG Wenying, LIU Xiyu, ZHAO Jinyou, et al. Comparison of Design Methods for Tensile Capacity of Screw Connections in Cold-formed Steel Structures[J]. Journal of Beijing University of Technology, 2022, 48(1): 95-104.
[4] 龚盈, 陈水福, 盛建康. 一种轻钢结构屋面系统的抗风极限分析[J]. 低温建筑技术, 2011, 33(2): 5-7,18.
GONG Ying, CHEN Shuifu, SHENG Jiankang. Ultimate Wind-resistant Analysis of a Light Steel Roofing System [J]. Low Temperature Architecture Technology, 2011, 33(2): 5-7, 18.
[5] GB 50009-2012 建筑结构荷载规范[S].
GB 50009-2012 Load Code for the Design of Building Structures[S].
[6] GB 50018-2002 冷弯薄壁型钢结构技术规范[S].
GB 50018-2002 Technical Code of Cold-formed Thin-wall Steel Structures[S].
[7] EN 1993-1-3: 2006, Eurocode 3: Design of Steel Structures-Part 1-3: General Rules-Supplementary Rules for Cold-formed Members and Sheeting[S].
[8] 张士翔, 赖燕德, 李庆祥. 直立锁边金属屋面系统风吸破坏机理研究[J]. 钢结构(中英文), 2020, 35(5): 10-18.
ZHANG Shixiang, LAI Yande, LI Qingxiang. Investigation on Failure Mechanism of the Standing Seam MetalRoof System[J]. Steel Construction, 2020, 35(5): 10-18.

备注/Memo

备注/Memo:
收稿日期:2023-12-25
作者简介:陈桂龙(1992-),男,助理工程师。
基金项目:中国国家铁路集团有限公司科技研究开发计划(N2020T004)
更新日期/Last Update: 2025-04-20