[1]李天铭.轨道约束对近断层简支梁桥纵向地震响应影响[J].高速铁路技术,2025,(02):62-69.[doi:10.12098/j.issn.1674-8247.2025.02.010]
 LI Tianming.Influence of Track Constraints on Longitudinal Seismic Response of Near-fault Simply Supported Beam Bridge[J].HIGH SPEED RAILWAY TECHNOLOGY,2025,(02):62-69.[doi:10.12098/j.issn.1674-8247.2025.02.010]
点击复制

轨道约束对近断层简支梁桥纵向地震响应影响()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
期数:
2025年02期
页码:
62-69
栏目:
研究创新
出版日期:
2025-04-20

文章信息/Info

Title:
Influence of Track Constraints on Longitudinal Seismic Response of Near-fault Simply Supported Beam Bridge
文章编号:
1674-8247(2025)02-0062-08
作者:
李天铭
(中铁一局集团科创产业发展有限公司, 西安 721000)
Author(s):
LI Tianming
(Science and Innovation Industrial Development Co., Ltd of China Railway First Group Co., Ltd., Xi'an 721000,China)
关键词:
轨道约束 近断层 脉冲地震动 纵向地震响应
Keywords:
track constraints near fault pulse ground motion longitudinal seismic response
分类号:
U448.21+7
DOI:
10.12098/j.issn.1674-8247.2025.02.010
文献标志码:
A
摘要:
随着我国铁路路网规模的不断扩展,高速铁路在近断层地区架设桥梁已成为不可避免的趋势。本文以一座近断层铁路简支梁桥为研究对象,通过有限元分析软件Opensees对该桥梁进行精细化建模,重点研究了扣件纵向阻力、滑动层摩擦系数以及剪力齿槽刚度等因素对铁路简支梁桥在地震作用下响应的影响。研究结果表明,随扣件纵向阻力增大,墩底剪力呈现增大趋势,墩底弯矩则呈现减小趋势,且中墩地震响应大于边墩; 随滑动层摩擦系数增大,桥梁地震响应呈现减小趋势,且对边墩的影响较中墩更为显著; 随剪力齿槽刚度的增大,桥梁地震响应呈现先增大后趋于稳定; 在不同轨道约束作用的影响下,近断层脉冲地震动会显著增加主梁的纵向位移和墩底内力,但并未明显改变地震响应的总体规律。
Abstract:
With the continuous expansion of China's railway network, it is inevitable to build high-speed railway bridges in near-fault areas. This paper took a near-fault railway simply supported beam bridge as the research object, and employed the finite element analysis software Opensees to finely model the bridge. The study focused on the impact of such factors as the longitudinal resistance of fasteners, friction coefficient of sliding layer and shear alveolar stiffness on seismic response of railway simply supported beam bridge. The results show that with the increase of the longitudinal resistance of the fastener, the shear force at the pier bottom tends to increase, while the bending moment at the pier bottom tends to decrease. Additionally the seismic response of the middle pier is greater than that of the side pier. With the increase of the friction coefficient of the sliding layer, the seismic response of the bridge tends to decrease, with a more significant impact on the side pier compared to the middle pier. With the increase in the stiffness of shear alveolar, the seismic response of the bridge increases first and then stabilizes. Under the influence of different track constraints, near-fault pulse ground motion has a significant amplification on the longitudinal displacement of the main beam and the internal force of the pier bottom, but it does not significantly change the seismic response law.

参考文献/References:

[1] 谢旭, 王炎, 陈列. 轨道约束对铁路减隔震桥梁地震响应的影响[J]. 铁道学报, 2012, 34(6): 75-82.
XIE Xu, WANG Yan, CHEN Lie. Effect of Rail Restraints on Seismic Responses of Cushioning Railway Bridges[J]. Journal of the China Railway Society, 2012, 34(6): 75-82.
[2] CHEN Lingkun, ZHANG Nan, JIANG Lizhong, et al. Near-fault Directivity Pulse-like Ground Motion Effect on High-speed Railway Bridge[J]. Journal of Central South University, 2014, 21(6): 2425-2436.
[3] 张英剑. 板式无砟轨道桥梁的抗震计算模型及地震反应研究[D]. 兰州: 兰州交通大学, 2016.
ZHANG Yingjian. Study on Seismic Calculation Model and Seismic Response of Slab Ballastless Track Bridge[D]. Lanzhou: Lanzhou Jiaotong University, 2016.
[4] 王晓昱. 考虑轨道约束的高速铁路桥梁抗震分析[D]. 北京: 北京交通大学, 2016.
WANG Xiaoyu. Seismic Analysis of High-speed Railway Bridges Considering Track Constraints[D]. Beijing: Beijing Jiaotong University, 2016.
[5] 张永亮, 于伟栋, 马华军, 等. 板式无砟轨道系统对不同抗震体系铁路桥梁纵向地震响应的影响[J]. 中南大学学报(自然科学版), 2017, 48(10): 2738-2744.
ZHANG Yongliang, YU Weidong, MA Huajun, et al. Influence of Slab Ballastless Track on Longitudinal Seismic Response of Railway Bridge with Different Seismic Systems[J]. Journal of Central South University(Science and Technology), 2017, 48(10): 2738-2744.
[6] 韩国庆, 蒋丽忠, 魏标, 等. 有砟轨道对典型单线铁路简支梁桥地震响应的影响[J]. 铁道科学与工程学报, 2019, 16(3): 690-697.
HAN Guoqing, JIANG Lizhong, WEI Biao, et al. Effects of Ballast Track Structure on Seismic Responses of Simply Supported Bridges in a Single Line Railway[J]. Journal of Railway Science and Engineering, 2019, 16(3): 690-697.
[7] 吕佳伟. 近断层脉冲地震作用下高速铁路简支梁桥梁-轨系统动力性能研究[D]. 重庆: 重庆交通大学, 2021.
LV Jiawei. Study on Dynamic Performance of Beam-rail System of Simply Supported Beam Bridge of High-speed Railway under Near-fault Pulse Earthquake[D]. Chongqing: Chongqing Jiaotong University, 2021.
[8] SHAMSI M, ZAKERINEJAD M, VAKILI A H. Seismic Analysis of Soil-pile-bridge-train Interaction for Isolated Monorail and Railway Bridges under Coupled Lateral-vertical Ground Motions[J]. Engineering Structures, 2021, 248: 113258.
[9] JIANG Hui, ZENG Cong, PENG Qiang, et al. Running Safety and Seismic Optimization of a Fault-crossing Simply-supported Girder Bridge for High-speed Railways Based on a Train-track-bridge Coupling System[J]. Journal of Central South University, 2022, 29(8): 2449-2466.
[10] 叶毅滔. 高速铁路轨道-桥梁系统地震破坏特征及震后行车分析[D]. 长沙: 中南大学, 2022.
YE Yitao. Seismic Damage Characteristics of Track-bridge System of High-speed Railway and Analysis of Running after Earthquake[D]. Changsha: Central South University, 2022.
[11] 石岩, 赵翔宇, 焦应乾, 等. 考虑轨道约束的连续梁拱桥地震反应及减震控制研究[J]. 世界地震工程, 2022, 38(1): 148-157.
SHI Yan, ZHAO Xiangyu, JIAO Yingqian, et al. Seismic Response and Control Study of Continuous Beam Arch Bridges under Track Constraint[J]. World Earthquake Engineering, 2022, 38(1): 148-157.
[12] 焉瑞鑫. 地震下考虑轨道约束的高速铁路桥梁行车安全性研究[D]. 兰州: 兰州交通大学, 2023.
YAN Ruixin. Study on Traffic Safety of High-speed Railway Bridges Considering Track Constraints under Earthquake[D]. Lanzhou: Lanzhou Jiaotong University, 2023.
[13] 杨彭钧, 刘琦, 吴斐璠, 等. 考虑轨道约束的连续梁桥地震响应分析[J]. 粉煤灰综合利用, 2024, 38(2): 125-131.
YANG Pengjun, LIU Qi, WU Feifan, et al. Seismic Response Analysis of Continuous Girder Bridges Considering Orbital Constraints[J]. Fly Ash Comprehensive Utilization, 2024, 38(2): 125-131.
[14] 刘尊稳,李欣婧,邓永杰,等.多遇地震下无砟轨道多跨简支梁桥行车安全性研究[J/OL]. 防灾减灾工程学报, 1-9[2025-01-15].https://doi.org/10.13409/j.cnki.jdpme. 20240526001.
LIU Zunwen, LI Xinjing, DENG Yongjie, et al. Research on Traffic Safety of Ballastless Track Multi-span Simply-supported Beam Bridge under Frequent Earthquakes [J/OL]. Journal of Disaster Prevention and Reduction Engineering, 1-9[2025-01-15]. https://doi.org/10.13409/j.cnki.jdpme. 20240526001.
[15] 方宜, 卓建成, 陈丽. 高速铁路桥梁病害整治顶梁工作对轨道结构的影响分析[J]. 高速铁路技术, 2023, 14(5): 29-33.
FANG Yi, ZHUO Jiancheng, CHEN Li. Analysis on the Impact of Girder Jacking for High-speed Railway Bridge Defects on Track Structure[J]. High Speed Railway Technology, 2023, 14(5): 29-33.
[16] 袁宇航, 薛小强, 吕龙, 等. 冲刷作用对考虑轨道约束的连续梁桥纵向地震响应影响分析[J]. 高速铁路技术, 2024, 15(5): 8-15.
YUAN Yuhang, XUE Xiaoqiang, LV Long, et al. Analysis of Scour Impact on Longitudinal Seismic Responses of Continuously Girder Railway Bridges Considering Track Constraints[J]. High Speed Railway Technology, 2024, 15(5): 8-15.
[17] 国巍, 王阳, 葛苍瑜, 等. 近断层地震动下高速铁路多跨简支梁桥震致破坏特征[J]. 振动与冲击, 2020, 39(17): 210-218.
GUO Wei, WANG Yang, GE Cangyu, et al. Seismic Failure Features of Multi-span Simply Supported Girder Bridges of High-speed Railway under Near-fault Earthquake[J]. Journal of Vibration and Shock, 2020, 39(17): 210-218.
[18] TB 10015-2012铁路无缝线路设计规范 [S].
TB 10015-2012 Code for Design of Railway Continuous Welded Rail [S].
[19] 黄宇辰, 王军文, 王少君. 无砟轨道约束对高铁FPS隔震简支梁桥纵向地震反应的影响[J]. 铁道建筑, 2015, 55(9): 24-28.
HUANG Yuchen, WANG Junwen, WANG Shaojun. Influence of Ballastless Track Constraint on Longitudinal Seismic Response of FPS Isolated Simply Supported Beam Bridge of High-speed Railway[J]. Railway Engineering, 2015, 55(9): 24-28.

相似文献/References:

[1]袁宇航,薛小强,吕 龙,等.冲刷作用对考虑轨道约束的连续梁桥纵向地震响应影响分析[J].高速铁路技术,2024,15(05):8.[doi:10.12098/j.issn.1674-8247.2024.05.002]
 YUAN Yuhang,XUE Xiaoqiang,LV Long,et al.Analysis of Scour Impact on Longitudinal Seismic Responses of Continuously Girder Railway Bridges Considering Track Constraints[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(02):8.[doi:10.12098/j.issn.1674-8247.2024.05.002]

备注/Memo

备注/Memo:
收稿日期:2024-11-10
作者简介:李天铭(1976-),男,高级工程师。
更新日期/Last Update: 2025-04-20