[1]黄成名,鲍慧明,张继鹏,等.高速及超高速磁悬浮线路平面设计参数研究[J].高速铁路技术,2024,(01):17-22,28.[doi:10.12098/j.issn.1674-8247.2024.01.004]
 HUANG Chengming,BAO Huiming,ZHANG Jipeng,et al.Study on Planar Design Parameters for High-speed and Ultra-high-speed Maglev Lines[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,(01):17-22,28.[doi:10.12098/j.issn.1674-8247.2024.01.004]
点击复制

高速及超高速磁悬浮线路平面设计参数研究()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
期数:
2024年01期
页码:
17-22,28
栏目:
理论探索
出版日期:
2024-03-20

文章信息/Info

Title:
Study on Planar Design Parameters for High-speed and Ultra-high-speed Maglev Lines
文章编号:
1674-8247(2024)01-0017-06
作者:
黄成名1鲍慧明2张继鹏1王英杰2
1.中铁工程设计咨询集团有限公司, 北京 100055;2.北京交通大学, 北京 100044
Author(s):
HUANG Chengming1BAO Huiming2ZHANG Jipeng1WANG Yingjie2
1.China Railway Engineering Design and Consulting Group Co. ,Ltd. ,Beijing 100055 ,China;2.Beijing Jiaotong University ,Beijing 100044 ,China
关键词:
磁悬浮动力学线路设计Simpack超高速参数分析
Keywords:
maglevdynamicsline designSimpackultra-high-speedparameter analysis
分类号:
U237;U212.33
DOI:
10.12098/j.issn.1674-8247.2024.01.004
文献标志码:
A
摘要:
超高速磁悬浮作为一种新兴的交通工具,正在逐步从理论研究向试验验证阶段发展。本文从磁悬浮轨道交通的原理和特点等方面出发,对比分析了高速磁悬浮和超高速磁悬浮交通的制式差异和线路平面参数取值差异,并且用动力学仿真手段对其进行了验证。首先,从高速磁悬浮现行规范和超高速磁悬浮研究资料出发,分析了最小曲线半径和最小缓和曲线长度的影响因素和计算方法,得到不同速度下的平面参数取值;随后,运用车辆-线路系统动力学仿真手段计算了动力学指标与曲线半径和缓和曲线长度的关系。研究结果表明:超高速磁悬浮设计速度为1000km/h时,最小圆曲线半径取18800m、最小缓和曲线长度取1340m较为合理。
Abstract:
Ultra-high-speed maglev,an emerging transportation technology,is transitioning from the realm of theoretical research into the stage of experimental validation. This paper started by outlining the foundational principles and distinguishing features of maglev rail transit,then compared the distinctions in system architecture and the values of horizontal alignment parameters between high-speed maglev and ultra-high-speed maglev systems,and verified these comparisons and distinctions by employing dynamic simulation analysis. Firstly,this study reviewed current specifications and research materials related to ultra-high-speed maglev technology,and analyzed the factors influencing and the methods for calculating the minimum curve radius and the minimum transition curve length for high-speed maglev systems,to obtain the parameter values at different speeds. Following this,the study employed dynamic simulation tools for vehicle-track systems to evaluate the relationship between dynamic performance indicators and both the curve radius and the transition curve lengths. The findings indicate that for ultra-high-speed maglev systems designed to operate at speeds of 1 000 km/h,a minimum circular curve radius of 18 800 m and a minimum transition curve length of 1 340 m are considered to be practical and reasonable.

参考文献/References:

[1] 熊嘉阳,邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报,2021,21(1):177-198. XIONG Jiayang,DENG Zigang. Research Progress of High-speed Maglev Rail Transit[J]. Journal of Traffic and Transportation Engineering,2021,21(1):177-198.
[2] 邓自刚,刘宗鑫,李海涛,等. 磁悬浮列车发展现状与展望[J].西南交通大学学报,2022,57(3):455-474,530. DENG Zigang,LIU Zongxin,LI Haitao,et al. Development Status and Prospect of Maglev Train[J]. Journal of Southwest Jiaotong University,2022,57(3):455-474,530.
[3] 米隆,招阳,魏庆朝,等. 磁浮交通系统线路缓和曲线参数取值方法研究[J]. 北京交通大学学报,2007,31(4):92-95,100. MI Long,ZHAO Yang,WEI Qingchao,et al. Research on Alignment Parameters of High-speed Maglev Railway Transition Curve[J]. Journal of Beijing Jiaotong University,2007,31(4):92-95,100.
[4] 易思蓉,杨冬营,吴跃成. 200 km/h中速磁浮最小竖曲线半径取值研究[J]. 高速铁路技术,2022,13(4):24-29. YI Sirong,YANG Dongying,WU Yuecheng. Study on Determining Minimum Radius of Vertical Curve for 200 km/h Medium Speed Maglev Railway[J]. High Speed Railway Technology,2022,13(4):24-29.
[5] 代一帆,刘万明. 高速磁浮平、竖曲线重叠地段线路参数研究[J]. 交通科学与工程,2019,35(2):100-105. DAI Yifan,LIU Wanming. Research on Alignment Parameters of High-speed Maglev at Horizontal and Vertical Curve Overlapped Region[J]. Journal of Transport Science and Engineering,2019, 35(2):100-105.
[6] 谢毅,寇峻瑜,余浩伟. 高速磁浮最小曲线半径及缓和曲线长度研究[J]. 铁道工程学报,2020,37(4):43-48. XIE Yi,KOU Junyu,YU Haowei. Research on the Minimum Plane Curve Radius and Transition Curve Length of High-speed Maglev[J]. Journal of Railway Engineering Society,2020,37(4):43-48.
[7] 吴昊,王飞,郭牧凡,等. 真空管超高速磁浮交通系统平面曲线参数运动学分析[J]. 铁道标准设计,2023,67(9):21-27. WU Hao,WANG Fei,GUO Mufan,et al. Kinematic Analysis on Plane Curve Parameter of Vacuum Tube Ultra-high-speed Maglev Transportation System[J]. Railway Standard Design,2023,67(9):21-27.
[8] 唐文冰,肖立业,王粟,等. 磁悬浮轨道交通中的磁悬浮导向方式研究综述[J]. 电工电能新技术,2022,41(5):45-60. TANG Wenbing,XIAO Liye,WANG Su,et al. Summary of Research on Levitation-guidance Modes in Maglev Rail Transportation Technology[J]. Advanced Technology of Electrical Engineering and Energy,2022,41(5):45-60.
[9] TB 10630 – 2019 磁浮铁路技术标准[S]. TB 10630 – 2019 Standard for Technology of Maglev Railway [S].
[10]?CJJ/T 310 – 2021 高速磁浮交通设计标准[S]. CJJ/T 310 – 2021 Standard for Design of High-speed Maglev Transit [S].
[11]?刘士苋,王磊,王路忠,等. 电动悬浮列车及车载超导磁体研究综述[J]. 西南交通大学学报,2023,58(4):734-753.
[12]?DENG Zigang,ZHANG Weihua,WANG Li,et al. A High-speed Running Test Platform for High-temperature Superconducting Maglev [J]. IEEE Transactions on Applied Superconductivity,2022,32(4):3600905.
[13]?何勇,刘成龙,杨雪峰,等. 真空管磁浮列车T形槽轨平顺度检测方法研究及应用[J]. 测绘通报,2019(6):117-120. HE Yong,LIU Chenglong,YANG Xuefeng,et al. Research and Application of T-shaped Groove Smoothness Detection Method for Evacuated Tube Maglev Train[J]. Bulletin of Surveying and Mapping,2019(6):117-120.

备注/Memo

备注/Memo:
收稿日期:2023-11-09
作者简介:黄成名(1982-),男,高级工程师。
更新日期/Last Update: 2024-03-20