[1]赵英伟.高烈度地震区倾斜隧道洞口段抗减震技术研究[J].高速铁路技术,2024,(02):32-38.[doi:10.12098/j.issn.1674-8247.2024.02.006]
 ZHAO Yingwei.Study on Anti-seismic and Vibration Reduction Techniques for Inclined Tunnel Portal Sections in High Seismic Intensity Zones[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,(02):32-38.[doi:10.12098/j.issn.1674-8247.2024.02.006]
点击复制

高烈度地震区倾斜隧道洞口段抗减震技术研究()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
期数:
2024年02期
页码:
32-38
栏目:
理论探索
出版日期:
2024-04-30

文章信息/Info

Title:
Study on Anti-seismic and Vibration Reduction Techniques for Inclined Tunnel Portal Sections in High Seismic Intensity Zones
文章编号:
1674-8247(2024)02-0032-07
作者:
赵英伟
中铁十四局集团第五工程有限公司,山东?济宁 272117
Author(s):
ZHAO Yingwei
The Fifth Engineering Co. ,Ltd. of China Railway Fourteenth Bureau Group Co. ,Ltd. ,Jining? 272117 ,China
关键词:
隧道工程高烈度地震区倾斜隧道洞口段抗减震措施
Keywords:
tunnelinghigh seismic intensity zonesinclined tunnelsportal sectionsanti-seismic measures
分类号:
U455
DOI:
10.12098/j.issn.1674-8247.2024.02.006
文献标志码:
A
摘要:
为提升高烈度地震区倾斜隧道洞口段的抗震性能,依托某隧道工程,利用有限差分数值软件FLAC3D研究了注浆加固和减震层的抗减震效果。结果表明:(1)隧道纵向应力极值和位移最大值出现在洞口中间过渡段,监测面内应力极值和位移最大值均出现在衬砌结构拱脚;(2)与无抗减震措施相比,注浆加固与施作减震层均能减少隧道二次衬砌位移差,施作减震层后隧道竖向位移差减少最多,减震效果达到74.83%;(3)工况1(无措施)最小主应力峰值最大,为-28.64MPa,施作减震层后为-20.05MPa,减震效果达到29.99%;(4)随着隧道纵向长度的增加,最小安全系数先减小后增大,最小值出现在中间过渡段监测面S3处;工况1安全系数为1.95,工况2为2.24,但仍低于安全阀值,工况3为2.56,符合安全要求。综合位移、应力和安全系数,采用减震层的抗减震效果优于注浆加固。研究成果可为倾斜隧道洞口段抗减震设防设计提供参考。
Abstract:
To enhance the seismic performance of inclined tunnel portal sections in high seismic intensity zones,this study,based on a specific tunnel project,employed the finite difference numerical software FLAC3D to investigate the effectiveness of grouting reinforcement and vibration damping layers. Findings indicate:(1)The extreme longitudinal stress and maximum displacement occur in the intermediate transition section of the tunnel portal,while the extreme internal stress and maximum displacement are both observed at the skewback of the lining structure. (2)Compared to scenarios without anti-seismic measures,both grouting reinforcement and the implementation of a vibration damping layer reduce the differential displacement of the secondary lining. The vertical displacement difference is most significantly reduced after installing the damping layer,with a vibration reduction effectiveness of 74. 83%.(3)The minimum principal stress peak is highest in Condition 1(with no measures),reaching -28. 64 MPa,and decreases to -20. 05 MPa after the installation of the damping layer,resulting in a vibration reduction effectiveness of 29. 99%. (4)As the longitudinal length of the tunnel increases,the minimum safety factor initially decreases before increasing,reaching its lowest value at monitoring surface S3 in the intermediate transition section. The safety factor is 1. 95 for Condition 1,and 2. 24 for Condition 2,which although improved,remains below the safety threshold,and rises to 2. 56 for Condition 3,meeting safety requirements. Considering displacement,stress,and safety factors,the adoption of a vibration damping layer demonstrates superior anti-seismic and vibration reduction performance compared to grouting reinforcement alone. The conclusions provide a valuable reference for the seismic-resistant design of inclined tunnel portal sections.

参考文献/References:

[1]? 崔光耀,伍修刚,王明年,等. 汶川8. 0级大地震公路隧道震害调查与震害特征[J]. 现代隧道技术,2017,54(2):9-16. CUI Guangyao,WU Xiugang,WANG Mingnian,et al. Earthquake Damages and Characteristics of Highway Tunnels in the 8. 0-Magnitude Wenchuan Earthquake[J]. Modern Tunnelling Technology,2017, 54(2):9-16.
[2]? 张威,李明,姬云平,等. 青海门源M6. 9地震典型隧道破坏特征分析与启示[J]. 地震工程学报,2022,44(3):661-669. ZHANG Wei,LI Ming,JI Yunping,et al. Analysis and Enlightenment of Typical Failure Characteristics of Tunnels Caused by the Menyuan M6. 9 Earthquake in Qinghai Province[J]. China Earthquake Engineering Journal,2022,44(3):661-669.
[3]? 王秋懿,杨奎,毛金龙,等. 九度地震区公路隧道二次衬砌结构抗震综合措施研究[J]. 现代隧道技术,2019,56(5):42-49,66. WANG Qiuyi,YANG Kui,MAO Jinlong,et al. Study on the Comprehensive Aseismic Measures for the Secondary Lining Structure of Highway Tunnels in Nine-degree Seismic Region[J]. Modern Tunnelling Technology,2019,56(5):42-49,66.
[4]? 王李斌,崔光耀,荆鸿飞. 高烈度地震区跨断层隧道围岩注浆抗震效果研究[J]. 高速铁路技术,2019,10(3):25-29. WANG Libin,CUI Guangyao,JING Hongfei. Study on Anti-seismic Effect of Surrounding Rock Grouting of Fault-crossing Tunnels in Highly Seismic Area[J]. High Speed Railway Technology,2019, 10(3):25-29.
[5]? 王道远,袁金秀,朱永全,等. 高烈度区软硬岩交界段隧道震害机制及减震缝减震技术模型试验研究[J]. 岩石力学与工程学报, 2017,36(S2):4113-4121. WANG Daoyuan,YUAN Jinxiu,ZHU Yongquan,et al. Model Test Study on Earthquake Damage Mechanism of Tunnel at the Junction of Soft and Hard Rocks in High Intensity Area and Damping Joint Damping Technology[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(S2):4113-4121.
[6]? 崔光耀,纪磊,荆鸿飞. 高烈度艰险山区跨断层隧道减震层减震技术研究[J]. 地震工程学报,2019,41(2):286-291. CUI Guangyao,JI Lei,JING Hongfei. Damping Shake Technology of the Shock Absorption Layer of Fault-crossing Tunnels in a Dangerous Mountainous Area with High-intensity Earthquakes[J]. China Earthquake Engineering Journal,2019,41(2):286-291.
[7]? 赵武胜,陈卫忠,马少森,等. 泡沫混凝土隧道减震层减震机制[J]. 岩土力学,2018,39(3):1027-1036. ZHAO Wusheng,CHEN Weizhong,MA Shaosen,et al. Isolation Effect of Foamed Concrete Layer on the Seismic Responses of Tunnel [J]. Rock and Soil Mechanics,2018,39(3):1027-1036.
[8]? 崔光耀,王明年,于丽,等. 穿越黏滑错动断层隧道减震层减震技术模型试验研究[J]. 岩土工程学报,2013,35(9):1753-1758. CUI Guangyao,WANG Mingnian,YU Li,et al. Model Tests on Damping Shake Technology of Shock Absorption Layer of Tunnels Crossing Stick-slip Faults[J]. Chinese Journal of Geotechnical Engineering,2013,35(9):1753-1758.
[9]? 王帅帅,高波. 隧道设置减震层减震机制研究[J]. 岩石力学与工程学报,2016,35(3):592-603. WANG Shuaishuai,GAO Bo. Damping Mechanism and Shaking Table Test on Mountain Tunnel Linings with Buffer Layers[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(3):592-603.
[10]?崔光耀,伍修刚,王明年,等. 高烈度地震区黏滑断层隧道减震层减震模型试验研究[J]. 岩土工程学报,2017,39(11):2125-2131. CUI Guangyao,WU Xiugang,WANG Mingnian,et al. Model Tests on Damping of Shock Absorption Layer of Stick-slip Fracture Tunnel in Highly Seismic Areas[J]. Chinese Journal of Geotechnical Engineering,2017,39(11):2125-2131.
[11]?闻毓民,信春雷,申玉生,等. 隧道衬砌结构减震层效能评定方法的振动台试验研究[J]. 振动与冲击,2022,41(5):197-207. WEN Yumin,XIN Chunlei,SHEN Yusheng,et al. Shaking Table Tests for Effectiveness Evaluation Method of Damping Layer of Tunnel Lining Structure[J]. Journal of Vibration and Shock,2022,41(5):197-207.
[12]?崔光耀,王明年,于丽,等. 汶川地震公路隧道洞口结构震害分析及震害机理研究[J]. 岩土工程学报,2013,35(6):1084-1091. CUI Guangyao,WANG Mingnian,YU Li,et al. Seismic Damage and Mechanism of Portal Structure of Highway Tunnels in Wenchuan Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2013,35(6):1084-1091.
[13]?张懂懂,刘洋,熊峰,等. P波与SV波斜入射下岩体隧道洞口段地震响应分析[J]. 振动与冲击,2022,41(24):278-286. ZHANG Dongdong,LIU Yang,XIONG Feng,et al. Seismic Response Analysis of Rock Tunnel Near-portal under Oblique Incidence of P Wave and SV Wave[J]. Journal of Vibration and Shock,2022, 41(24):278-286.
[14]?赵旭,黎若寒,陶连金,等. 松动圈及减震层对隧道地震响应影响的试验研究[J]. 岩石力学与工程学报,2018,37(S1):3310-3319. ZHAO Xu,LI Ruohan,TAO Lianjin,et al. Experimental Study on the Influence of Loose Ring and Damping Layer on Seismic Response of Tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2018,37(S1):3310-3319.
[15]?杨长卫,张良,张凯文,等. 山岭隧道跨断裂带段及洞口段地震响应大型振动台模型试验研究[J]. 岩石力学与工程学报,2023, 42(4):993-1002. YANG Changwei,ZHANG Liang,ZHANG Kaiwen,et al. Large Scale Shaking Table Model Test on Seismic Response of Mountain Tunnel Portal Section Passing through Fault Zone[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(4):993-1002.[16]?蒋梦新,邱枫博,刘久明,等. 强震区隧道洞口段刚柔并济抗震技术研究[J]. 高速铁路技术,2021,12(4):16-20. JIANG Mengxin,QIU Fengbo,LIU Jiuming,et al. Study on Rigid and Flexible Anti-seismic Technology for Tunnel Portal Sections in Meizoseismal Areas[J]. High Speed Railway Technology,2021, 12(4):16-20.

相似文献/References:

[1]陈秦泷,王庆建,崔光耀.玉磨铁路隧道整体配套移动栈桥仰拱施工技术研究[J].高速铁路技术,2022,13(05):107.[doi:10.12098/j.issn.1674-8247.2022.05.021]
 CHEN Qinlong,WANG Qingjian,CUI Guangyao.Study on Construction Technology of Inverted Arch of Yuxi-Mohan Railway Tunnel by Using the Integrated Supporting Movable Trestle[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(02):107.[doi:10.12098/j.issn.1674-8247.2022.05.021]
[2]崔光耀,陈秦泷,王明胜,等.片理化玄武岩隧道大变形影响因素分析[J].高速铁路技术,2022,13(06):12.[doi:10.12098/j.issn.1674-8247.2022.06.003 ]
 CUI Guangyao,CHEN Qinlong,WANG Mingsheng,et al.On Impact Factors of Large Deformation of Tunnels in Schistose Basalt[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(02):12.[doi:10.12098/j.issn.1674-8247.2022.06.003 ]
[3]刘朝钦.软弱地层超大矩形顶管盾构隧道开挖面稳定性研究[J].高速铁路技术,2022,13(06):36.[doi:10.12098/j.issn.1674-8247.2022.06.007 ]
 LIU Chaoqin.Study on Stability of Excavation Face of Super-large Rectangular Pipe-jacking Shield Tunnel in Soft Ground[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(02):36.[doi:10.12098/j.issn.1674-8247.2022.06.007 ]
[4]叶 堃,丁浩江,岳志勤.玉京山隧道巨型溶洞地质特征与稳定性评价[J].高速铁路技术,2023,(01):81.[doi:10.12098/j.issn.1674-8247.2023.01.015]
 YE Kun,DING Haojiang,YUE Zhiqin.Geological Characteristics and Stability Evaluation of Giant Karst Cave Affecting Yujingshan Tunnel[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,(02):81.[doi:10.12098/j.issn.1674-8247.2023.01.015]
[5]宿春亮.锦屏水电站辅助洞岩爆特征及防控技术研究[J].高速铁路技术,2023,(02):75.[doi:10.12098/j.issn.1674-8247.2023.02.015]
 SU Chunliang.A Study on Rock Burst Characteristics and Prevention and Control Technology of Auxiliary Tunnel of Jinping Hydropower Station[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,(02):75.[doi:10.12098/j.issn.1674-8247.2023.02.015]
[6]崔光耀,韩驰,王明胜,等.高地应力软岩隧道大变形机制及控制技术研究综述[J].高速铁路技术,2023,(04):13.[doi:10.12098/j.issn.1674-8247.2023.04.003]
 CUI Guangyao,HAN Chi,WANG Mingsheng,et al.Review of Mechanism of Large Deformation in Soft Rock Tunnels with High Geo-stress and Its Control Techniques[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,(02):13.[doi:10.12098/j.issn.1674-8247.2023.04.003]

备注/Memo

备注/Memo:
收稿日期:2024-01-08
作者简介:赵英伟(1976-),男,工程师。
更新日期/Last Update: 2024-04-30