[1]禚 一.基于FENAP平台的RC桥墩非线性滞回性能分析[J].高速铁路技术,2017,8(06):5-9,32.[doi:10.12098/j.issn.1674-8247.2017.06.002]
 ZHUO Yi.Non-linear Hysteretic Behavior Analysis of RC Bridge Piers Based on FENAP Platform[J].HIGH SPEED RAILWAY TECHNOLOGY,2017,8(06):5-9,32.[doi:10.12098/j.issn.1674-8247.2017.06.002]
点击复制

基于FENAP平台的RC桥墩非线性滞回性能分析()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
8卷
期数:
2017年06期
页码:
5-9,32
栏目:
出版日期:
2017-11-15

文章信息/Info

Title:
Non-linear Hysteretic Behavior Analysis of RC Bridge Piers Based on FENAP Platform
文章编号:
1674—8247(2017)06—0005—05
作者:
禚 一
中国铁路设计集团有限公司, 天津 300142
Author(s):
ZHUO Yi
China Railway Design Corporation, Tianjin 300142, China
关键词:
钢筋混凝土 桥墩 精细化模型 纤维梁柱单元 非线性滞回分析 模拟平台 Bauschinger效应
Keywords:
Key words:reinforced concrete(RC) bridge pier refined model fiber beam-column element non-linear hysteretic analysis simulation platform Bauschinger effect
分类号:
TU352
DOI:
10.12098/j.issn.1674-8247.2017.06.002
文献标志码:
A
摘要:
为精细化模拟钢筋混凝土桥墩的非线性滞回性能,利用自主研发的纤维梁柱单元模拟分析平台FENAP,建立了桥墩试件的精细化计算模型,并对其进行了低周反复荷载试验条件下的非线性滞回分析。模拟过程中考虑了桥墩构件刚度和强度退化等损伤效应、轴力和弯矩的多维耦合效应,以及箍筋对混凝土的约束效应等非线性行为。对比结果显示:利用FENAP平台得到的桥墩滞回特性与试验结果吻合较好,说明FENAP平台可有效模拟钢筋混凝土桥墩构件的复杂非线性行为,且计算效率和求解精度较高。文章进一步比较选用不同钢筋本构模型对分析结果的影响并得出结论,Menegotto-Pinto模型较双线性等向强化模型更好地模拟了试件的刚度退化、强度退化和“捏拢”效应,双线性钢筋本构模型严重高估了构件的刚度和耗能能力。
Abstract:
Abstract:In order to simulate the nonlinear hysteretic behavior of RC bridge pierselaborately, based on the independently developed simulation analysis platform FENAP of fiber beam-column element, the refined analysis model of the bridge pier specimen is constructed and its nonlinear hysteretic behavior under low cyclic loading and simulated. In the simulation process, the damage effect of stiffness and strength degradation of members, multi-dimensional coupling effect of axial force and bending moment, and binding effect of stirrups on concrete are considered. The comparison results show that the hysteretic behavior based on FENAP platform and test match well, the complex nonlinear behavior of RC bridge pier components may be simulated refinedly with high computational efficiency and solution accuracy by using the platform FENAP. Furtherly, the effect of choosing different reinforcement constitutive model to the analysis results is compared, it shows that Menegotto-Pinto model can simulated the rigidity degradation, strength degradation of members and ‘pinching’ effect better than bilinear isotropic hardening model. The stiffness and energy dissipation capacity shall be overestimated if bilinear reinforcement constitutive modelis used.

参考文献/References:

[1] Taucer F F, Spacone E, Filippou F C. A fiber beam-column element for seismic response analysis of reinforced concrete structures[R]. EERC Report 91/17, Earthquake Engineering Research Center, University of California, Bekerley, CA, 1991.
[2] Powell G H, Chen P F. 3D beam-column element with generalized plastic hinges[J]. Journal of Mechanical Engineering, ASCE, 1986, 112(7): 627-641.
[3] Sfakianakis M, Fardis M N. Bounding surface model for cyclic biaxial bending of RC sections[J]. Journal of Mechanical Engineering, ASCE, 1991, 117(12): 2748–2769.
[4] Roufaiel M S L, Meyer C. Analytical modeling of hysteretic behavior of R/C frames[J]. Journal of Structural Engineering, ASCE, 1987, 113(3): 429-444.
[5] Spacone E, Filippou F C, Taucer F F. Fibre beam-column model for non-linear analysis of R/C frames: Part I. Formulation[J]. Earthquake Engineering and Structural Dynamics, 1996, 25(7): 711-725.
[6] Spacone E, Filippou F C, Taucer F F. Fibre beam-column model for non-linear analysis of R/C frames: Part II. Applications[J]. Earthquake Engineering and Structural Dynamics, 1996, 25(7): 727-742.
[7] Cofer W F, Zhang Y, Mclean D I. A comparison of current computer analysis methods for seismic performance of reinforced concrete members[J]. Finite Elements in Analysis and Design, 2002, 38(9): 835-861.
[8] McKenna F, Fenves G L. The OpenSEES command languagemanual[EB/OL].http://opensees.berkeley.edu/wiki/index.php/Main_Page, 2010-3-31.
[9] PrakashV,Powell G H and Campbell SD. DRAIN-2DX: Static and Dynamic Analysis of Inelastic Plane Structures[R]. NISEE, Earthquake Engineering Research Center, University.of California, Berkeley, CA, 1993.
[10] 禚一, 李忠献. 钢筋混凝土纤维梁柱单元实用模拟平台[J]. 工程力学, 2011,28(4): 102-108. ZHUO Yi, LI Zhongxian. A practical Simulation Platform of Reinforced Concrete Fiber Beam-column Element[J]. Engineering Mechanics 2011; 28(4): 102-108.
[11] Filippou F C, Popov E P, Bertero V V. Effects of Bond Deterioration on Hysteretic Behavior of Reinforced Concrete Joints[R]. EERC Report 83/19, Earthquake Engineering Research Center, University of California, Bekerley, CA, 1983.
[12] Menegotto M, Pinto P E. Slender RC Compressed Members in Biaxial Bending[J]. Journal of Structural Engineering, ASCE, 1977, 103(3):587-605.
[13] Mohd-Yassin M H. Nonlinear Analysis of Prestressed Concrete Structures under Monotonic and Cyclic Loads[D]. University of California, Berkeley, 1994.
[14] Scott B D, Park R, Priestley M J N. Stress-strain Behavior of Concrete Confined by Overlapping Hoops at Low and High Strain rates[J]. ACI Structural Journal, 1982, 84(4): 13-27.
[15] Kent D C, Park R. Flexural members with Confined Concrete[J]. Journal of the Structural Division, ASCE, 1971, 97(7): 1969-1990.
[16] Blakely R W G, Park R. Prestressed Concrete Sections with Cyclic Flexure[J]. Journal of the Structural Division, ASCE, 1973, 99(8): 1717-1742.
[17] Nagaya K, Kawashima K. Effect of Aspect ratio and Longitudinal Reinforcement Diameter on Seismic Performance of Reinforced Concrete Bridge Columns[R]. Report No. TIT/EERG,2001, Tokyo Institute of Technology, Tokyo, Japan.
[18] 禚一, 王菲. 罕遇地震下城际铁路连续梁桥延性抗震设计[J].铁道工程学报, 2012,29(4): 66-71. ZHUO Yi, WANG Fei. Seismic Ductility Design for Intercity Railway Continuous Bridge Under Rare Earthquake[J]. Journal of Railway Engineering Society, 2012,29(4): 66-71.

备注/Memo

备注/Memo:
作者简介:禚一(1983-),男,高级工程师。
更新日期/Last Update: 2017-12-15