[1]李艳,徐银光,李浩冉,等.400 km/h高速列车通过隧道气动效应数值模拟[J].高速铁路技术,2021,12(05):52-56.[doi:10.12098/j.issn.1674-8247.2021.05.010]
LI Yan,XU Yinguang,LI Haoran,et al.Numerical Simulation of Aerodynamic Effect of 400 km/h High-speed Train Passing Through a Tunnel[J].HIGH SPEED RAILWAY TECHNOLOGY,2021,12(05):52-56.[doi:10.12098/j.issn.1674-8247.2021.05.010]
点击复制
400 km/h高速列车通过隧道气动效应数值模拟()
《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]
- 卷:
-
12卷
- 期数:
-
2021年05期
- 页码:
-
52-56
- 栏目:
-
- 出版日期:
-
2021-10-28
文章信息/Info
- Title:
-
Numerical Simulation of Aerodynamic Effect of 400 km/h High-speed Train Passing Through a Tunnel
- 文章编号:
-
1674—8247(2021)05—0052-05
- 作者:
-
李艳; 徐银光; 李浩冉; 李田; 杨邑宏
-
1. 中铁二院工程集团有限责任公司, 成都 610031;
2. 西南交通大学牵引动力国家重点实验室, 成都 610031;
3. 中国测试技术研究院, 成都 610056
- Author(s):
-
LI Yan; XU Yinguang; LI Haoran; LI Tian; YANG Yihong
-
1. China Railway Eryuan Engineering Group Co. Ltd., Chengdu 610031, China;
2. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China;
3. National Institute of Measurement and Testing Technology, Chengdu 610056,
-
- 关键词:
-
高速列车|压力波|隧道|气动效应|数值模拟
- Keywords:
-
high-speed train|pressure wave|tunnel|aerodynamic effect|numerical simulation
- 分类号:
-
U451+.3
- DOI:
-
10.12098/j.issn.1674-8247.2021.05.010
- 文献标志码:
-
A
- 摘要:
-
为研究列车以400 km/h速度通过隧道的气动特性,本文利用三维、瞬态可压缩的k-两方程湍流模型数值模拟了8车编组高速列车通过100 m2隧道的气动效应,包括高速列车通过隧道时的车体表面、隧道壁面的压力时程曲线和隧道出口的微压波。结果表明:(1)列车通过隧道时,车体相同横断面上的不同表面测点压力变化规律一致,幅值差异较小;(2)非流线型车体不同横断面表面测点压力的变化幅值存在一定差异,差异幅值最大为4.8%;(3)随着测点与头车鼻尖距离的增加,车体表面测点的负压幅值逐渐增大,尾车表面的负压幅值最大,较头车表面负压幅值增加14.3%;(4)沿列车行驶方向,隧道壁面压力变化幅值呈现出先增加后降低的趋势,在隧道中部250 m和隧道出口位置,不同测点压力变化幅值最大相差79%。
- Abstract:
-
In order to study the aerodynamic characteristics of trains passing through a tunnel at a speed of 400 km/h, this paper numerically simulates the aerodynamic effect of an 8-car high-speed trains passing through a 100 m2 tunnel by using a 3D transient compressible k-ε two-equation turbulence model, including the time-history curve of the pressure of the car body surface and the tunnel wall when the high-speed train passes through the tunnel, and the micro-pressure wave at the tunnel exit. The results show that:(1) When the train passes through the tunnel, the pressure changes at different surface measuring points on the same cross-section of the car body are consistent, and the amplitude difference is small. (2) There is a certain difference in the variation amplitude of pressure at surface measuring points on different cross-sections of the non-streamlined car body, and the maximum difference amplitude is 4.8%. (3) With the increase of the distance between the measuring point and the nose tip of the head car, the negative pressure amplitude of the measuring point on the car body surface gradually increases, and the negative pressure amplitude of the tail car surface is the largest, which is 14.3% higher than that of the head car surface. (4) Along the train running direction, the amplitude of the pressure change on the tunnel wall shows a trend of increasing at first and then decreasing, and at 250 m in the middle of the tunnel and at the exit of the tunnel, the maximum difference between the pressure changes at different measuring points is 79%.
备注/Memo
- 备注/Memo:
-
作者简介:李艳(1984-),女,高级工程师。基金项目:四川省科技计划(2019YJ0227),中国博士后科学基金(2019M663550),中铁二院工程集团有限责任公司科技开发计划(KSNQ202057)引文格式:李艳, 徐银光, 李浩冉, 等. 400 km/h高速列车通过隧道气动效应数值模拟[J]. 高速铁路技术,2021,12(5):52-56.LI Yan, XU Yinguang, LI Haoran, et al. Numerical Simulation of Aerodynamic Effect of 400 km/h High-speed Train Passing Through a Tunnel[J]. High Speed Railway Technology, 2021, 12(5):52-56.
更新日期/Last Update:
2021-10-28