[1]刘朝钦.软弱地层超大矩形顶管盾构隧道开挖面稳定性研究[J].高速铁路技术,2022,13(06):36-40.[doi:10.12098/j.issn.1674-8247.2022.06.007 ]
 LIU Chaoqin.Study on Stability of Excavation Face of Super-large Rectangular Pipe-jacking Shield Tunnel in Soft Ground[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(06):36-40.[doi:10.12098/j.issn.1674-8247.2022.06.007 ]
点击复制

软弱地层超大矩形顶管盾构隧道开挖面稳定性研究()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
13卷
期数:
2022年06期
页码:
36-40
栏目:
理论探索
出版日期:
2022-12-20

文章信息/Info

Title:
Study on Stability of Excavation Face of Super-large Rectangular Pipe-jacking Shield Tunnel in Soft Ground
文章编号:
1674—8247 (2022) 06—0036—05
作者:
刘朝钦
海峡(福建)交通工程设计有限公司,福州350004
Author(s):
LIU Chaoqin
Haixia Traffic Engineering Design Co. ,Ltd ,Fuzhou? 350004 ,China
关键词:
隧道工程 矩形顶管盾构 软弱地层 开挖面稳定
Keywords:
tunnel engineering rectangular pipe jacking shield soft ground stability of excavation face
分类号:
U455.43
DOI:
10.12098/j.issn.1674-8247.2022.06.007
文献标志码:
A
摘要:
为保证超大矩形顶管盾构隧道开挖面稳定,本文以某超大矩形顶管盾构隧道工程为背景,建立了软弱地层超大矩形顶管盾构隧道模型,研究了不同内摩擦角因子、黏聚力因子、埋深因子时开挖面位移和支护应力差率曲线,结果表明:(1)埋深因子越大,相同支护应力差率m下矩形顶管盾构隧道开挖面位移越大,开挖面主动破坏时m越小,被动破坏时m越大;(2)黏聚力因子越大,相同m下矩形顶管盾构开挖面位移越小,开挖面主动破坏时m越小,被动破坏时m越大;(3)内摩擦因子越大,相同m下矩形顶管盾构开挖面位移越小,开挖面主动破坏时差率m越小,被动破坏时m越大。研究结论可为类似工程提供参考。
Abstract:
In order to ensure the stability of the excavation face of the super-large rectangular pipe-jacking shield tunnel,a super-large rectangular pipe-jacking shield tunnel model in soft ground is established in this paper based on a case study of a super-large rectangular pipe-jacking shield tunnel project to study the displacement and support stress difference curves of the excavation face at different internal friction angle factors,cohesion factors,and buried depth factors. The results show that:(1)The greater the burial depth factor,the greater the displacement of the excavation face of the rectangular pipe-jacking shield tunnel under the same support stress difference rate m,and the smaller the m in case of active failure of the excavation face,the greater the m in case of passive failure.(2)The greater the cohesion factor,the smaller the displacement of the shield excavation face of rectangular pipe jacking at the same m,and the smaller the m in case of active failure of the excavation face,the greater the m in case of passive failure.(3)The larger the internal friction factor,the smaller the displacement of the excavation face of the rectangular pipe jacking shield at the same m,the smaller the difference rate of active failure m of the excavation face,and the larger the difference rate of passive failure m. The research results may be used for reference by similar projects.

参考文献/References:

[1] 宋棋龙,祁文睿,李文静,等. 滨海软土地层浅埋超大直径盾构隧道开挖面破坏机理及加固范围研究[J]. 建筑科学与工程学报, 2021,38(6): 155 - 162. SONG Qilong,QI Wenrui,LI Wenjing,et al. Study on Failure Mechanism of Excavation Face and Reinforcement Range of Shallow-Buried Super Large Diameter Shield Tunnel in Coastal Soft Soil Stratum[J]. Journal of Architecture and Civil Engineering,2021, 38(6): 155 - 162.
[2] 王闯,封坤,戴志成,等. 富水地层双线小净距土压平衡盾构开挖面稳定性研究[J]. 铁道标准设计,2018,62(12): 112 - 117. WANG Chuang,FENG Kun,DAI Zhicheng,et al. Study on the Excavation Face Stability of Small Interval Double-Line Earth Pressure Balance Shield Tunnel in Water-Rich Stratum[J]. Railway Standard Design,2018,62(12): 112 - 117.
[3] 马少坤,韦榕宽,邵羽,等. 基于透明土的隧道开挖面稳定性三维可视化模型试验研究及应用[J]. 岩土工程学报,2021,43(10):1798 - 1806. MA Shaokun,WEI Rongkuan,SHAO Yu,et al. 3D Visual Model Tests on Stability of Tunnel Excavation Surface Based on Transparent Soil[J]. Chinese Journal of Geotechnical Engineering,2021,43(10):1798 - 1806,1958.
[4] 肖鹏飞,冯光福,贾少东,等. 近距离下穿车站富水圆砾地层盾构隧道开挖面稳定性研究[J]. 隧道与地下工程灾害防治,2021, 3(1): 75 - 81. XIAO Pengfei,FENG Guangfu,JIA Shaodong,et al. Research on Stability of Excavation Face of Shield Tunnel Undercrossing Station in Water-Rich Gravel Stratum[J]. Hazard Control in Tunnelling and Underground Engineering,2021,3(1): 75 - 81.
[5] 朱正国,陈信宇,陈自飞,等. 盾构隧道下穿既有车站变形控制研究[J]. 高速铁路技术,2019,10(4): 6 - 11. ZHU Zhengguo,CHEN Xinyu,CHEN Zifei,et al. Research on Deformation Control of Shield Tunneling under Subway Station[J]. High Speed Railway Technology,2019,10(4): 6 - 11.
[6] 潘格林,王建国,王国富,等. 砂卵石强透水地层泥水平衡盾构隧道开挖面极限支护压力研究[J]. 铁道建筑,2018,58(9): 55 -57. PAN Gelin,WANG Jianguo,WANG Guofu,et al. Limit Support Pressure for Excavation Face of Slurry Balanced Shield Tunnel in Sand Gravel Strong Permeable Stratum[J]. Railway Engineering,2018,58(9): 55 - 57.
[7] 宋洋,王韦颐,杜春生. 砂 - 砾复合地层盾构隧道开挖面稳定模型试验与极限支护压力研究[J]. 岩土工程学报,2020,42(12):2206 - 2214. SONG Yang,WANG Weiyi,DU Chunsheng. Model Tests on Stability and Ultimate Support Pressure of Shield Tunnel in Sand-Gravel Composite Stratum[J]. Chinese Journal of Geotechnical Engineering,2020,42(12): 2206 - 2214.
[8] 李清川,李术才,王汉鹏,等. 上覆流沙层隧道开挖面稳定性分析与数值试验研究[J]. 岩土力学,2018,39(7): 2681 - 2690. LI Qingchuan,LI Shucai,WANG Hanpeng,et al. Stability Analysis and Numerical Experiment Study of Excavation Face for Tunnels Overlaid by Quicksand Stratum[J]. Rock and Soil Mechanics, 2018,39(7): 2681 - 2690.
[9] 李凤涛,唐晓武,刘维,等. 浅埋泥水盾构隧道开挖面被动失稳分析[J]. 中南大学学报(自然科学版),2017,48(7): 1809 - 1816. LI Fengtao,TANG Xiaowu,LIU Wei,et al. Blow-out Failure Analysis of Tunnel Face in Shallow Slurry Shield Tunneling[J]. Journal of Central South University (Science and Technology),2017,48(7):1809 - 1816.
[10]?叶治,刘华北,刘文. 盾构隧道开挖面涌水对地表沉降及管片内力的影响分析[J]. 隧道建设,2017,37(10): 1276 - 1286. YE Zhi,LIU Huabei,LIU Wen. Analysis of Influence of Water Inrush at Shield Tunneling Face on Ground Surface Settlement and Internal Stress of Segment[J]. Tunnel Construction,2017,37(10): 1276 -1286.
[11]?黄阜,张芝齐,王芬,等. 基于Hoek-Brown准则的隧道开挖面安全系数模拟[J]. 交通科学与工程,2018,34(1): 33 - 39. HUANG Fu,ZHANG Zhiqi,WANG Fen,et al. Numerical Simulation Study on Safety Factor for a Tunnel Face Subjected to Hoek-Brown Criterion[J]. Journal of Transport Science and Engineering,2018, 34(1): 33 - 39.
[12]?朱叶艇,张桓,张子新,等. 盾构隧道推进对邻近地下管线影响的物理模型试验研究[J]. 岩土力学,2016,37(S2): 151 - 160. ZHU Yeting,ZHANG Huan,ZHANG Zixin,et al. Physical Model Test Study of Influence of Advance of Shield Tunnel on Adjacent Underground Pipelines[J]. Rock and Soil Mechanics,2016,37(S2):151 - 160.

相似文献/References:

[1]陈秦泷,王庆建,崔光耀.玉磨铁路隧道整体配套移动栈桥仰拱施工技术研究[J].高速铁路技术,2022,13(05):107.[doi:10.12098/j.issn.1674-8247.2022.05.021]
 CHEN Qinlong,WANG Qingjian,CUI Guangyao.Study on Construction Technology of Inverted Arch of Yuxi-Mohan Railway Tunnel by Using the Integrated Supporting Movable Trestle[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(06):107.[doi:10.12098/j.issn.1674-8247.2022.05.021]
[2]崔光耀,陈秦泷,王明胜,等.片理化玄武岩隧道大变形影响因素分析[J].高速铁路技术,2022,13(06):12.[doi:10.12098/j.issn.1674-8247.2022.06.003 ]
 CUI Guangyao,CHEN Qinlong,WANG Mingsheng,et al.On Impact Factors of Large Deformation of Tunnels in Schistose Basalt[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(06):12.[doi:10.12098/j.issn.1674-8247.2022.06.003 ]
[3]叶 堃,丁浩江,岳志勤.玉京山隧道巨型溶洞地质特征与稳定性评价[J].高速铁路技术,2023,14(01):81.[doi:10.12098/j.issn.1674-8247.2023.01.015]
 YE Kun,DING Haojiang,YUE Zhiqin.Geological Characteristics and Stability Evaluation of Giant Karst Cave Affecting Yujingshan Tunnel[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(06):81.[doi:10.12098/j.issn.1674-8247.2023.01.015]
[4]宿春亮.锦屏水电站辅助洞岩爆特征及防控技术研究[J].高速铁路技术,2023,14(02):75.[doi:10.12098/j.issn.1674-8247.2023.02.015]
 SU Chunliang.A Study on Rock Burst Characteristics and Prevention and Control Technology of Auxiliary Tunnel of Jinping Hydropower Station[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(06):75.[doi:10.12098/j.issn.1674-8247.2023.02.015]
[5]崔光耀,韩驰,王明胜,等.高地应力软岩隧道大变形机制及控制技术研究综述[J].高速铁路技术,2023,14(04):13.[doi:10.12098/j.issn.1674-8247.2023.04.003]
 CUI Guangyao,HAN Chi,WANG Mingsheng,et al.Review of Mechanism of Large Deformation in Soft Rock Tunnels with High Geo-stress and Its Control Techniques[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(06):13.[doi:10.12098/j.issn.1674-8247.2023.04.003]
[6]赵英伟.高烈度地震区倾斜隧道洞口段抗减震技术研究[J].高速铁路技术,2024,15(02):32.[doi:10.12098/j.issn.1674-8247.2024.02.006]
 ZHAO Yingwei.Study on Anti-seismic and Vibration Reduction Techniques for Inclined Tunnel Portal Sections in High Seismic Intensity Zones[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(06):32.[doi:10.12098/j.issn.1674-8247.2024.02.006]
[7]李准,吴炜,马文景,等.基于隧道三台阶铣挖定额施工组织模型的数据误差处理研究[J].高速铁路技术,2024,15(04):8.[doi:10.12098/j.issn.1674-8247.2024.04.002]
 LI Zhun,WU Wei,MA Wenjing,et al.Study on Data Error Handling for Construction Organization Model Based on the Quota of Three-bench Cutting Excavation Method for Tunnels[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(06):8.[doi:10.12098/j.issn.1674-8247.2024.04.002]
[8]何子阳,庄永香,郭艳军,等.强震区浅埋偏压隧道洞口段减震层减震效果分析[J].高速铁路技术,2024,15(04):56.[doi:10.12098/j.issn.1674-8247.2024.04.011]
 HE Ziyang,ZHUANG Yongxiang,GUO Yanjun,et al.Analysis on the Seismic Response Reduction of Shock Absorption Layer in the Shallow and Unsymmetrical Pressure Section of Tunnel Portal in Strong Earthquake Area[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(06):56.[doi:10.12098/j.issn.1674-8247.2024.04.011]

备注/Memo

备注/Memo:
收稿日期:2022-10-14
作者简介:刘朝钦(1990-),男,工程师。基金项目:国家自然科学基金项目(52178378);中铁第四勘察设计院集团有限公司科技研究开发项目(2020K143)
更新日期/Last Update: 2022-12-20