[1]蒋楚生,李昭颖,肖世国,等.两类拉筋的对拉薄壁面板式路堤挡墙性能对比分析[J].高速铁路技术,2023,14(04):8-12,62.[doi:10.12098/j.issn.1674-8247.2023.04.002]
 JIANG Chusheng,LI Zhaoying,XIAO Shiguo,et al.Comparison Analysis of Performance of Thin Panels Mutually Anchored by Geogrids and Steel Bars in Reinforced Embankments[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(04):8-12,62.[doi:10.12098/j.issn.1674-8247.2023.04.002]
点击复制

两类拉筋的对拉薄壁面板式路堤挡墙性能对比分析()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
14卷
期数:
2023年04期
页码:
8-12,62
栏目:
出版日期:
2023-08-30

文章信息/Info

Title:
Comparison Analysis of Performance of Thin Panels Mutually Anchored by Geogrids and Steel Bars in Reinforced Embankments
文章编号:
1674-8247(2023)04-0008-05
作者:
蒋楚生1李昭颖23肖世国23曾 惜1邹川1
1.中铁二院工程集团有限责任公司,成都 610031;2.西南交通大学,成都 610031;3.西南交通大学高速铁路线路工程教育部重点实验室,成都 610031
Author(s):
JIANG Chusheng1LI Zhaoying223XIAO Shiguo223ZENG Xi1ZOU Chuan1
1.China Railway Eryuan Engineering Group Co. ,Ltd. ,Chengdu? 610031 ,China;2.Southwest Jiaotong University ,Chengdu? 610031 ,China;3.Key Laboratory of High-speed Railway Engineering ,Ministry of Education , Southwest Jiaotong University ,Chengdu? 610031 ,China
关键词:
路堤对拉薄壁面板数值模拟拉筋拉力土压力
Keywords:
embankmentmutually anchored thin panelsnumerical simulationtensile stress of reinforcementslateral earth pressure
分类号:
U213.1+1??
DOI:
10.12098/j.issn.1674-8247.2023.04.002
文献标志码:
A
摘要:
为探究钢拉筋和土工格栅加筋的对拉薄壁面板式路堤挡墙的性能差异,采用FLAC3D数值模拟软件分析了不同填土高度的拉筋拉应力、面板水平位移和侧向土压力,同时结合施工难易程度、结构耐久性、经济性等因素对两种路堤进行比较,结果表明:(1)在高填方(填土高度10~12m)情况下,土工格栅式拉筋面板中部出现显著外鼓变形;钢筋式拉筋面板顶部与底部外伸位移较大、中部则向内凹,其变位模式与前者相反;(2)相比于土工格栅,钢筋承受拉力更大,面板所受侧向土压力也较大;路堤填土高度达到6m以上时,钢筋在底层两端部所受拉力最大;(3)钢拉筋比土工格栅拉筋对面板的侧向变形控制能力强,侧向位移约为土工格栅拉筋的1/10;但钢拉筋与面板节点施工控制要求较高,且长期防腐蚀性难以保障,耐久性、经济性、路堤易压实性等均弱于土工格栅拉筋,而土工格栅拉筋因其面板侧向变形控制能力较弱,一般不适于较高填方(6m以上)。为便于施工,可采用对拉包裹式加筋土挡墙,装饰面板独立于其后填料。
Abstract:
In order to investigate performance similarities and differences of thin panels mutually anchored by geogrids and steel bars in reinforced embankments,tensile stress of the reinforcements,horizontal displacements of the panels and lateral earth pressure on them are analyzed using FLAC3D numerical simulation method under varying embankment height. Meanwhile,construction operability,service durability and effective cost of the two structures are generally compared. The results show that:(1)As for embankments with 10m to 12m heights,the middle of the panel pulled by geogrids clearly bulges out;On the contrary,the middle of the panel pulled by steel bars concaves inward and displacements of its top and bottom are relatively larger than the middle.(2)Compared with the geogrids,steel bars bear higher tension force,and lateral earth pressure on their panels is correspondingly larger. The steel bars suffer the maximum tension at the two ends of the bottom layer if the embankment height reaches more than 6m.(3)The deformation of the panels anchored by steel bars is much less than that by geogrids,and the former is about 1/10 of the latter. But for the former,construction requirements of joints between the bars and the panels are too rigorous,and their long-term corrosion protection is difficult to potentially cause worse service durability than the geogrids. Besides,in terms of effective cost of the structure and compressibility of the backfills,the former is also not as good as the latter. However,as for controlling lateral deformation of the panels,the geogrids are worse than the steel bars,and they are accordingly not more suitable for the embankments with more than 6 m heights. For construction convenience,a two-side package-pulling type reinforcement retaining wall can be used with decorative panels independent of the filling.

参考文献/References:

[1]蒋楚生,赵晓彦,李庆海,等. 铁路多级加筋土挡墙研究现状及应用展望[J]. 高速铁路技术,2017,8(1):44-48. JIANG Chusheng,ZHAO Xiaoyan,LI Qinghai,et al. Current Situation and Application Prospect of Multi-stage Reinforced Soil Wall for Railway[J]. High Speed Railway Technology,2017,8(1):44-48.
[2]杨长卫,周峰,杨国涛,等. 加筋土挡墙地震稳定性时频分析研究[J]. 铁道工程学报,2015,32(9):41-48. YANG Changwei,ZHOU Feng,YANG Guotao,et al. Seismic Stability Time-frequency Analysis Theory Resolution of Reinforced Retaining Wall[J]. Journal of Railway Engineering Society,2015, 32(9):41-48.
[3]杨广庆,周亦涛,周乔勇. 加筋土挡墙拉筋轴向应力分布规律研究[J]. 岩土工程学报,2013,35(4):650-654. YANG Guangqing,ZHOU Yitao,ZHOU Qiaoyong. Distribution Rules of Axial Stress of Reinforcement in Reinforced Earth Retaining Wall[J]. Chinese Journal of Geotechnical Engineering,2013,35(4):650-654.
[4]陈建峰,柳军修,石振明. 软土地基加筋土挡墙数值模拟及稳定性探讨[J]. 岩石力学与工程学报,2012,31(9):1928-1935. CHEN Jianfeng,LIU Junxiu,SHI Zhenming. Numerical Simulation and Stability Discussion of Reinforced Earth Retaining Wall in Soft Soil Foundation[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(9):1928-1935.
[5]苏骏. 双面加筋挡土墙的试验研究及数值模拟分析[D]. 武汉:武汉理工大学,2005. SU Jun. Experimental Study and Numerical Simulation Analysis of Double-sided Reinforced Retaining Wall[D]. Wuhan:Wuhan University of Technology,2005.
[6]李厚民,熊健民,余天庆. 互锚式薄壁挡土墙影响因素分析[J].岩土力学,2006,27(S2):897-901. LI Houmin,XIONG Jianmin,YU Tianqing. Finite Element Analysis of Mutual Anchoring Thin Retaining Wall[J]. Rock and Soil Mechanics,2006,27(S2):897-901.

备注/Memo

备注/Memo:
收稿日期:2021-03-02
作者简介:蒋楚生(1964-),男,教授级高级工程师。
更新日期/Last Update: 2023-08-30