[1]韦子文.基于改进蚁群算法的路径规划算法研究[J].高速铁路技术,2023,14(05):69-74.[doi:10.12098/j.issn.1674-8247.2023.05.013]
WEI Ziwen.A Study on Path Planning Algorithm Based on Improved Ant Colony Algorithm[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(05):69-74.[doi:10.12098/j.issn.1674-8247.2023.05.013]
点击复制
基于改进蚁群算法的路径规划算法研究()
《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]
- 卷:
-
14卷
- 期数:
-
2023年05期
- 页码:
-
69-74
- 栏目:
-
- 出版日期:
-
2023-11-20
文章信息/Info
- Title:
-
A Study on Path Planning Algorithm Based on Improved Ant Colony Algorithm
- 文章编号:
-
1674-8247(2023)05-0069-06
- 作者:
-
韦子文
-
中铁第一勘察设计院集团有限公司,? 西安 710043
- Author(s):
-
WEI Ziwen
-
China Railway First Survey and Design Institute Group Co. ,Ltd. ,Xi’ an? 710043 ,China
-
- 关键词:
-
智能机器人; 路径规划; 多约束; 多邻域; 蚁群算法
- Keywords:
-
intelligent robot; path planning; multi-constraint; multi-neighborhood; ant colony algorithm
- 分类号:
-
U284.92
- DOI:
-
10.12098/j.issn.1674-8247.2023.05.013
- 文献标志码:
-
A
- 摘要:
-
智能机器人搬运铁路电务检修基地中待检修设备可极大提高日常运营维护的智能化水平。本文针对智能机器人在日常巡检过程中受到铁路电务检修基地室内通道及其自身实际运行工况等限制,提出了改进的蚁群算法以获取最优路径。首先,基于图论和二维栅格法对电务检修基地的室内布置进行环境建模。然后,通过分析智能机器人在实际工况下的各种约束,建立以路径最短、最平滑为目标的路径规划模型。接着,引入“分类学习”思想,增加蚁群蚁种,优化信息素更新策略,基于“节约里程法”思想在状态转移规则中引入距离节约因子,增加蚁群搜索方向等来改进传统蚁群算法。最后,通过实际案例进行仿真验证,本文算法与其他两种改进蚁群算法相比,路径距离更短、更平滑。
- Abstract:
-
Intelligent robots can greatly improve the level of intelligence in daily operation and maintenance by transporting equipment to be repaired in railway communication and signaling maintenance depots. The paper addresses the limitations faced by intelligent robots during daily patrol due to indoor passages and their actual operating conditions at the railway communication and signaling maintenance depot. Firstly,a two-dimensional grid method based on graph theory was used to model the indoor layout of the maintenance depot,and a path planning model with the shortest and smoothest path as the goal was established by analyzing the various constraints faced by the intelligent robot in actual working conditions. Secondly,the traditional ant colony algorithm was improved by introducing the idea of “classification learning”,adding ant colony species,optimizing information update strategies,introducing distance-saving factors in the state transition rules based on the idea of “Saving Algorithm”,and increasing the direction of ant colony search,which was used to obtain the optimal path. Finally,simulation verification was carried out through practical cases,and compared with two other improved ant colony algorithms,this algorithm has a shorter and smoother path distance.
参考文献/References:
[1]代文平,陈纪纲,尹磊,等. 铁路牵引变电所智能巡控机器人系统研究与设计[J]. 高速铁路技术,2021,12(4):69-72. DAI Wenping,CHEN Jigang,YIN Lei,et al. Study and Design of Intelligent Patrol Control Robot System for Railway Traction Substation [J]. High Speed Railway Technology,2021,12(4):69-72.
[2]FERNANDEZ J A,GONZALEZ J. Hierarchical Graph Search for Mobile Robot Path Planning[C]//Proceedings of 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146). May 20-20,1998,Leuven,Belgium. IEEE, 2002 :656-661.
[3]QI Ningning,MA Bojun,LIU Xian’en,et al. A Modified Artificial Potential Field Algorithm for Mobile Robot Path Planning[C]//2008 7th World Congress on Intelligent Control and Automation. June 25-27,2008,Chongqing,China. IEEE,2008 :2603-2607.
[4? GU Jiajun, CAO Q. Path Planning for Mobile Robot in a 2. 5-dimensional Grid-based Map[J]. Ind Robot,2011,38 :315-321.
[5]WANG Rui,WANG Zaitang. Path Planning for Mobile Robot Based on Improved Ant Colony Algorithm[J]. Applied Mechanics and Materials,2013,385/386 :717-720.
[6]HOU Yuanbin, WANG Wei, LU Xiaoyue. Mobile Robot Path Planning and Research in the Improved Artificial Immune Algorithm [J]. Advanced Materials Research,2012,466/467 :864-869.
[7]吕战永,曹江涛. 自反馈生物激励神经网络机器人路径规划[J].计算机工程与应用,2014,50(16):255-258,270. LV Zhanyong,CAO Jiangtao. Robot Path Planning Method Based on Biologically Incentives Neural Network with Self-feedback[J]. Computer Engineering and Applications,2014,50(16):255-258, 270.
[8]徐菱,付文浩,江文辉,等. 基于16方向24邻域改进蚁群算法的移动机器人路径规划[J]. 控制与决策,2021,36(5):1137-1146. XU Ling,FU Wenhao,JIANG Wenhui,et al. Mobile Robots Path Planning Based on 16-Directions 24-Neighborhoods Improved Ant Colony Algorithm[J]. Control and Decision,2021,36(5):1137-1146.
[9]蒋强,易春林,张伟,等. 基于蚁群算法的移动机器人多目标路径规划[J]. 计算机仿真,2021,38(2):318-325. JIANG Qiang,YI Chunlin,ZHANG Wei,et al. The Multi-objective Path Planning for Mobile Robot Based on Ant Colony Algorithm[J]. Computer Simulation,2021,38(2):318-325.
[10]NAZARAHARI M, KHANMIRZA E, DOOSTIE S. Multi-objective Multi-robot Path Planning in Continuous Environment Using an Enhanced Genetic Algorithm[J]. Expert Systems With Applications,2019,115 :106-120.
[11]胡章芳,程亮,张杰,等. 多约束条件下基于改进遗传算法的移动机器人路径规划[J]. 重庆邮电大学学报(自然科学版),2021, 33(6):999-1006. HU Zhangfang,CHENG Liang,ZHANG Jie,et al. Path Planning of Mobile Robot Based on Improved Genetic Algorithms under Multiple Constraints[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition),2021,33(6):999-1006.
[12]于军琪,李若琳,赵安军,等. 并行排序蚁群算法规划仓库AGV路径研究[J]. 机械科学与技术,2021,40(4):609-618. YU Junqi,LI Ruolin,ZHAO Anjun,et al. Planning Warehouse AGV Path with Parallel-ranking Ant Colony Optimization Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2021,40(4):609-618.
[13]李奇才,舒远仲,洪宇轩. 一种蚁群算法与自适应机制的路径规划算法优化[J]. 机械科学与技术,2022,41(7):1095-1101. LI Qicai,SHU Yuanzhong,HONG Yuxuan. Optimizing Path Planning Algorithm Based on Ant Colony Algorithm and Adaptive Mechanism [J]. Mechanical Science and Technology for Aerospace Engineering, 2022,41(7):1095-1101.
[14]谭丽,韦子文. 基于CCLPSO算法的Y型交路列车开行方案优化研究[J]. 铁道科学与工程学报,2019,16(8):2122-2129. TAN Li,WEI Ziwen. Optimization Research of Train Schedule of Y-type Train Routing Mode Based on CCLPSO Algorithm[J]. Journal of Railway Science and Engineering,2019,16(8):2122-2129.
备注/Memo
- 备注/Memo:
-
收稿日期:2022-06-15
作者简介:韦子文(1994-),男,工程师。
更新日期/Last Update:
2023-11-20