[1]高 楠,毛邦燕,张广泽,等.隧道影响浅层泉点的量化方法[J].高速铁路技术,2023,14(05):75-80.[doi:10.12098/j.issn.1674-8247.2023.05.014]
GAO Nan,MAO Bangyan,ZHANG Guangze,et al.A Method for Quantizing the Impact of Tunnel on Shallow Springs[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(05):75-80.[doi:10.12098/j.issn.1674-8247.2023.05.014]
点击复制
隧道影响浅层泉点的量化方法()
《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]
- 卷:
-
14卷
- 期数:
-
2023年05期
- 页码:
-
75-80
- 栏目:
-
- 出版日期:
-
2023-11-20
文章信息/Info
- Title:
-
A Method for Quantizing the Impact of Tunnel on Shallow Springs
- 文章编号:
-
1674-8247(2023)05-0075-06
- 作者:
-
高 楠; 毛邦燕; 张广泽; 徐学渊
-
中铁二院工程集团有限责任公司,成都 610031
- Author(s):
-
GAO Nan; MAO Bangyan; ZHANG Guangze; XU Xueyuan
-
China Railway Eryuan Engineering Group Co. ,Ltd. ,Chengdu? 610031 ,China
-
- 关键词:
-
岩溶泉; 泉域; 环境负效应
- Keywords:
-
karst spring; spring catchment; negative environmental effect
- 分类号:
-
U452.1+1
- DOI:
-
10.12098/j.issn.1674-8247.2023.05.014
- 文献标志码:
-
A
- 摘要:
-
隧道开挖后会使隧道周围一定范围内地下水位下降,造成地表出露的泉点减流与疏干,这种环境负效应在岩溶地区尤其突出。本文对岩溶地区隧道影响浅层泉点的量化方法进行研究。首先,根据浅层岩溶水循环特征,将浅层岩溶泉点划分为接触型(Ⅰ)、侵蚀型(Ⅱ)和暗河型(Ⅲ),分析泉点泉域边界条件,确定了泉域圈闭原则。其次,总结归纳了隧道对于浅层泉点影响范围的预测方法。最后,提出了隧道影响泉点的4种模式,即无影响型(A)、减流影响型(B)、泉点疏干型(C)和泉域疏干型(D),以及不同模式泉点流量受影响程度的量化方法。以川东隔挡式构造某隧道为例,对提出的隧道影响浅层泉点的量化方法进行应用,预测隧道对5个地下水有疏干影响,对3个地下水点有不同程度的减流影响。
- Abstract:
-
Tunnel excavation can cause a decrease in groundwater level within a certain range around the tunnel,resulting in reduced flow and dewatering of springs exposed on the surface. This negative environmental effect is particularly prominent in karst areas. This paper studied the method for quantizing the impact of tunnels on shallow springs in karst areas. Based on the characteristics of shallow karst water circulation,shallow karst springs were classified into contact type(I),erosion type(Ⅱ),and underground river type(Ⅲ). The boundary conditions of spring catchments were analyzed,and the principles for delineating catchment areas were determined. The paper summarized the methods for predicting the impact range of tunnels on shallow springs,and proposed four modes of tunnel impact on springs,namely,no impact(A),reduced flow impact(B),spring dewatering(C),and catchment dewatering (D)and the methods for quantizing the degree of impact on spring flow in different modes were also proposed. Taking a tunnel with a barrier-type structure in the eastern Sichuan as an example,the proposed method was applied,and it was predicted that the tunnel would dewater 5 groundwater points and had varying degrees of reduced flow impact on 3 groundwater points.
参考文献/References:
[1]赵瑜,胡波,陈海林,等. 岩溶隧道工程修建对地下水环境的影响[J]. 土木建筑与环境工程,2018,40(5):1-8. ZHAO Yu,HU Bo,CHEN Hailin,et al. Impact of Tunnel Engineering on Groundwater Environment in Karst Area[J]. Journal of Civil, Architectural & Environmental Engineering,2018,40(5):1-8.
[2]梁永平,申豪勇,赵春红,等. 对中国北方岩溶水研究方向的思考与实践[J]. 中国岩溶,2021,40(3):363-380. LIANG Yongping,SHEN Haoyong,ZHAO Chunhong,et al. Thinking and Practice on the Research Direction of Karst Water in Northern China[J]. Carsologica Sinica,2021,40(3):363-380.
[3]王家乐. 济南岩溶水系统多级次循环模式分析及识别方法研究[D]. 武汉:中国地质大学,2016. WANG Jiale. Analysis and Identification of Hierarchical Groundwater Flow System in Jinan[D]. Wuhan:China University of Geosciences, 2016.
[4]T?TH J. A Theory of Groundwater Motion in Small Drainage Basins in Central Alberta,Canada[J]. Journal of Geophysical Research, 1962,67(11):4375-4388.
[5]钟玲敏. 川东高陡背斜区岩溶空间分异特征及评价系统构建研究[D]. 成都:成都理工大学,2018. ZHONG Lingmin. Research on the Karst Development Characteristics of High-steep Anticline in Eastern Sichuan and Evaluation System Construction[D]. Chengdu:Chengdu University of Technology, 2018.
[6]李潇,漆继红,许模. 西南典型紧窄褶皱小尺度浅层岩溶水系统特征及隧道涌水分析[J]. 中国岩溶,2020,39(3):375-383. LI Xiao,QI Jihong,XU Mo. Analysis on the Characteristics of Small-scale Shallow Karst Water Systems in Typical Tight-narrow Folds and Tunnel Water Inrush in Southwestern China[J]. Carsologica Sinica, 2020,39(3):375-383.
[7]DUPUIT J. Etudes Theoriques et Pratiques sur le Mouvement des Canaux de Couverts et a Travers les Terrains Permeables[M]. 2nd ed. Paris:Dunod,1863.
[8]THIEM G. Hydrologische methoden. [M]. Leipzig:J. M. Gebhardt’s verlag,1906.
[9]TODD D K. Groundwater Hydrology[M]. New York:Wiley,1959.
[10]BEAR J. Hydraulics of Groundwater[M]. New York:McGraw-Hill Book Co. ,1979.
[11]王军辉,王峰. 论抽水的降落漏斗范围、影响半径与环境影响范围[J]. 水利学报,2020,51(7):827-834. WANG Junhui,WANG Feng. Discussion on the Range of Groundwater Depression Cone,Radius of Influence and Scope of Environmental Impacts during Pumping[J]. Journal of Hydraulic Engineering,2020,51(7):827-834.
[12]张人权,梁杏,靳孟贵. 水文地质学基础[M]. 6版. 北京:地质出版社,2011. ZHANG Renquan,LIANG Xing,JIN Menggui. Foundation of Hydrogeology[M]. 6th ed. Beijing:Geological Publishing House, 2011.
[13]HJ 610-2016 环境影响评价技术导则-地下水环境[S]. HJ 610-2016 Technical Guidelines for Environmental Impact Assessment-Groundwater Environment[S].
[14]孙从军,韩振波,赵振,等. 地下水数值模拟的研究与应用进展[J]. 环境工程,2013,31(5):9-13,17. SUN Congjun,HAN Zhenbo,ZHAO Zhen,et al. Advances in Research and Application of Groundwater Numerical Simulation[J]. Environmental Engineering,2013,31(5):9-13,17.
[15]徐中平,周训,崔相飞,等. 岩溶区地下水数值模拟研究进展[J].中国岩溶,2018,37(4):475-483. XU Zhongping,ZHOU Xun,CUI Xiangfei,et al. Research Advances of Numerical Simulation of Groundwater in Karst Areas[J]. Carsologica Sinica,2018,37(4):475-483.
[16]陈明浩,邓宏科,张广泽,等. 昭通隧道岩溶水文地质特征及突涌水危险性评价[J]. 高速铁路技术,2020,11(6):34-39. CHEN Minghao,DENG Hongke,ZHANG Guangze,et al. Analysis of Karst Hydrogeological Characteristics and Risk Assessment of Water Inrush for the Zhaotong Tunnel[J]. High Speed Railway Technology,2020,11(6):34-39.
备注/Memo
- 备注/Memo:
-
收稿日期:2022-11-14
作者简介:高楠(1996-),男,助理工程师。
更新日期/Last Update:
2023-11-20