[1]张天龙,何 庆,高岩,等.复杂建设环境下基于HybridA*算法的铁路平面线形绿色优化设计[J].高速铁路技术,2024,15(01):47-52.[doi:10.12098/j.issn.1674-8247.2024.01.009]
 ZHANG Tianlong,HE Qing,GAO Yan,et al.Green Optimization Design of Railway Horizontal Alignment under Complex Construction Environment Based on Hybrid A* Algorithm[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(01):47-52.[doi:10.12098/j.issn.1674-8247.2024.01.009]
点击复制

复杂建设环境下基于HybridA*算法的铁路平面线形绿色优化设计()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
15卷
期数:
2024年01期
页码:
47-52
栏目:
出版日期:
2024-03-20

文章信息/Info

Title:
Green Optimization Design of Railway Horizontal Alignment under Complex Construction Environment Based on Hybrid A* Algorithm
文章编号:
1674-8247(2024)01-0047-06
作者:
张天龙何 庆高岩高天赐李子涵
西南交通大学,成都 610031
Author(s):
ZHANG TianlongHE QingGAO YanGAO TianciLI Zihan
Southwest Jiaotong University ,Chengdu 610031 ,China
关键词:
铁路线路设计水平线路绿色生态Hybrid A*算法
Keywords:
railway line designhorizontal alignmentgreen ecologyHybrid A* algorithm
分类号:
U212.32
DOI:
10.12098/j.issn.1674-8247.2024.01.009
文献标志码:
A
摘要:
随着“双碳经济下绿色铁路”理念的兴起,将“绿色生态”融入到铁路平面线路优化已成为近年来的研究热点。本文以铁路建设成本与生态破坏成本的协同优化为目标,引入并改进了一种自动驾驶导航算法(HybridA*算法),以适应复杂的铁路设计问题,同时考虑最小曲线半径、最大曲线半径、最短曲线长度、最短夹直线长度、缓和曲线长度等铁路线形约束。研究结果表明:(1)改进后算法以离散网格方式整合外部环境因素,实现渐进式全局探索,获取接近全局最优的铁路线路设计结果;(2)该方法在复杂外部环境约束下,无需预设水平交点位置和数量,可自动生成符合线路-环境耦合约束的优化平面线路方案。
Abstract:
As the concept of the“green railway”gains momentum within the dual-carbon economy framework,the incorporation of“green ecology”into the enhancement of railway planar alignment has emerged as a significant area of research interest in recent years. This study focused on achieving coordinated optimization between railway construction expenses and ecological impact costs. For this purpose,an autonomous driving navigation algorithm (Hybrid A*algorithm)was introduced and modified to effectively tackle intricate railway design challenges. Paramount to the study is the consideration of critical railway alignment constraints which include the minimum and maximum curve radii,the shortest permissible length of curves and transition curves,and the requisite lengths for transition curves. The findings suggest the following:(1)The modified algorithm incorporates external environmental influences in a discrete grid approach,facilitating advanced global exploration and yielding railway alignment designs that approach the global optimal solution. (2)This technique,when applied in the presence of intricate external environmental constraints,eliminates the need for predefining horizontal intersection points and their quantities. Instead,it can autonomously develop optimized planar alignment plans that satisfy the interdependent restrictions of alignment and environment.

参考文献/References:

[1] 薛新功,李伟,蒲浩. 铁路线路智能优化方法研究综述[J]. 铁道学报,2018,40(3):6-15. XUE Xingong,LI Wei,PU Hao. Review on Intelligent Optimization Methods for Railway Alignment[J]. Journal of the China Railway Society,2018,40(3):6-15.
[2] 詹振炎,蒋红斐,蒲浩. 复线铁路的线型设计与整体优化[J]. 铁道学报,1998,20(6):81. ZHAN Zhenyan,JIANG Hongfei,PU Hao. Linear Design and Overall Optimization of Double-track Railway[J]. Journal of the China Railway Society,1998,20(6):81.
[3] 刘琦,谢毅,胡新明,等. 基于地质实体的铁路选线优化与决策模型设计[J]. 高速铁路技术,2022,13(5):1-4,19. LIU Qi,XIE Yi,HU Xinming,et al. Railway Route Optimization and Decision-making Model Design Based on Geological Entities[J]. High Speed Railway Technology,2022,13(5):1-4,19.
[4] 蒲浩,赵海峰,李伟. 基于动态规划的铁路三维空间智能选线方法[J]. 铁道科学与工程学报,2012,9(2):55-61. PU Hao,ZHAO Haifeng,LI Wei. A 3D Spatial Intelligent Route Selection Approach for Railway Alignments Based on Dynamic Programming[J]. Journal of Railway Science and Engineering, 2012,9(2):55-61.
[5] ZHANG Hong,PU Hao,SCHONFELD P,et al. Multi-objective Railway Alignment Optimization Considering Costs and Environmental Impacts[J]. Applied Soft Computing,2020,89 :106105.
[6] VAZQUEZ‐MENDEZ M E,CASAL G,CASTRO A,et al. An Algorithm for Random Generation of Admissible Horizontal Alignments for Optimum Layout Design[J]. Computer-aided Civil and Infrastructure Engineering,2021,36(8):1056-1072.
[7] 李伟,蒲浩,郑晓强. 基于双向广义距离变换的复杂环境铁路线路优化[J]. 铁道学报,2017,39(2):90-98. LI Wei,PU Hao,ZHENG Xiaoqiang. Methodology for Railway Alignment Optimization in Complex Environment Based on Bidirectional Generalized Distance Transform[J]. Journal of the China Railway Society,2017,39(2):90-98.
[8] GAO Tianci,LI Zihan,GAO Yan,et al. A Deep Reinforcement Learning Approach to Mountain Railway Alignment Optimization[J]. Computer-aided Civil and Infrastructure Engineering,2022,37(1):73-92.
[9] PUSHAK Y,HARE W,LUCET Y. Multiple-path Selection for New Highway Alignments Using Discrete Algorithms[J]. European Journal of Operational Research,2016,248(2):415-427.
[10]DOLGOV D,THRUN S,MONTEMERLO M,et al. Practical Search Techniques in Path Planning for Autonomous Driving[J]. AAAI Workshop-Technical Report,2008,:32-37.
[11]SONG Taoran,PU Hao,SCHONFELD P,et al. Mountain Railway Alignment Optimization Integrating Layouts of Large-scale Auxiliary Construction Projects[J]. Computer-aided Civil and Infrastructure Engineering,2023,38(4):433-453.

备注/Memo

备注/Memo:
收稿日期:2023-11-09
作者简介:张天龙(1995-),男,博士研究生。
更新日期/Last Update: 2024-03-20