[1]张亚辉,彭立飞,刘凯,等.基于人工蜂群优化小波神经网络的深基坑开挖对既有盾构隧道变形的预测分析[J].高速铁路技术,2024,15(04):1-7,99.[doi:10.12098/j.issn.1674-8247.2024.04.001]
 ZHANG Yahui,PENG Lifei,LIU Kai,et al.Prediction Analysis of Existing Shield Tunnel Deformation Induced by Deep Excavation Using Artificial Bee Colony Optimized Wavelet Neural Network[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(04):1-7,99.[doi:10.12098/j.issn.1674-8247.2024.04.001]
点击复制

基于人工蜂群优化小波神经网络的深基坑开挖对既有盾构隧道变形的预测分析()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
15卷
期数:
2024年04期
页码:
1-7,99
栏目:
理论探索
出版日期:
2024-08-30

文章信息/Info

Title:
Prediction Analysis of Existing Shield Tunnel Deformation Induced by Deep Excavation Using Artificial Bee Colony Optimized Wavelet Neural Network
文章编号:
1674-8247(2024)04-001-07
作者:
张亚辉12彭立飞3刘凯3徐强24樊浩博24
1.河北城乡建设学校,石家庄 050030;2.石家庄铁道大学道路与铁道工程安全保障教育部重点实验室,石家庄 050043;3.济南轨道交通集团第一运营有限公司,济南 250300;4.石家庄铁道大学,石家庄 050043
Author(s):
ZHANG Yahui124PENG Lifei3LIU Kai3XU Qiang244FAN Haobo244
1.Hebei Urban and Rural Construction School ,Shijiazhuang? 050030 ,China;2.Key Laboratory of Roads and Railway Engineering Safety Control of Ministry of Education ,Shijiazhuang Tiedao University ,Shijiazhuang? 050043 ,China;3.The First Operation Co. ,Ltd. of Jinan Rail Transit Group Co. ,Ltd. ,Jinan? 250300 ,China;4.Shijiazhuang Tiedao University ,Shijiazhuang? 050043 ,China
关键词:
盾构隧道变形预测人工蜂群深基坑小波神经网络
Keywords:
shield tunneldeformation predictionartificial bee colonydeep excavationwavelet neural network
分类号:
U455.43
DOI:
10.12098/j.issn.1674-8247.2024.04.001
文献标志码:
A
摘要:
小波神经网络在对数据预测方面存在收敛速度慢、极易陷入局部最优的缺陷,人工蜂群算法全局寻优能力强、收敛速度快,但其本身也存在寻找到最优解时速度变慢以及后期寻优能力弱的缺点。本文利用人工蜂群算法对小波神经网络进行优化,建立ABC-WNN分析模型,并依托基坑工程实例,对基坑开挖引起的盾构隧道变形量进行预测分析,并将结果与单一的BP神经网络模型、WNN模型进行均方差以及平均绝对误差对比。结果表明:(1)ABC-WNN模型预测值与实际工程数据拟合程度高,相对误差最大仅为2.41×10-5,表明该模型预测功能较为可靠;(2)ABC-WNN的各项统计学特征均为最低,分别为0.557和0.563,人工蜂群优化后的小波神经网络模型对变形量预测精度更高、计算稳定性更好、收敛速度更快。研究成果可为类似工程的盾构隧道变形预测提供一种新途径。
Abstract:
Wavelet neural networks(WNNs)possess inherent drawbacks in data prediction,such as slow convergence and susceptibility to local optima. Conversely,artificial bee colony(ABC)algorithms exhibit strong global search capability and fast convergence,albeit with a tendency to slow down when approaching optimal solutions and weaker exploration ability in later stages. This study employed the ABC algorithm to optimize a WNN,and constructed an ABC-WNN analytical model. With the excavation of foundation pit as the case for study,the model was utilized to predict deformation induced by deep excavation in an existing shield tunnel. Predictions were then compared against those from standalone BP neural network and WNN models in terms of mean squared error and average absolute error. The results reveal that:(1)The ABC-WNN model exhibits high goodness-of-fit with actual engineering data,with a maximum relative error of merely 2. 41×10-5,indicating reliable predictive capability. (2)Statistical characteristics of the ABC-WNN model are the lowest,specifically with values of 0. 557 and 0. 563,signifying that the ABC-optimized wavelet neural network model provides higher prediction accuracy,improved computational stability,and faster convergence for tunnel deformation quantification. These findings offer a novel approach for predicting shield tunnel deformation in analogous engineering contexts.

参考文献/References:

[1] 李忠超,王超哲,杨新,等. 武汉粉砂地层深基坑开挖对既有盾构隧道影响分析[J]. 安全与环境工程,2022,29(4):187-195. LI Zhongchao,WANG Chaozhe,YANG Xin,et al. Impacts of Deep Excavation on Existing Shield Tunnels in Wuhan Silty Sand[J]. Safety and Environmental Engineering,2022,29(4):187-195.
[2] 戚长军,刘争宏,余武术,等. 基坑开挖对既有盾构隧道与地层的影响分析[J]. 水利与建筑工程学报,2014,12(5):142-146. QI Changjun,LIU Zhenghong,YU Wushu,et al. Influence of Foundation Excavation on the Adjacent Existing Shield Tunnels and Loess Strata[J]. Journal of Water Resources and Architectural Engineering,2014,12(5):142-146.
[3] 聂浩. 基坑开挖对既有盾构隧道的影响研究[J]. 铁道勘察, 2019,45(2):62-67. NIE Hao. Study on the Influence of Foundation Excavation on Existing Shield Tunnel [J]. Railway Investigation and Surveying,2019, 45(2):62-67.
[4] 陈柚州,任涛,邓朋,等. 基于人工蜂群优化小波神经网络的隧道沉降预测[J]. 现代隧道技术,2019,56(4):56-61. CHEN Youzhou,REN Tao,DENG Peng,et al. Prediction of Tunnel Settlements by Optimized Wavelet Neural Network Based on ABC [J]. Modern Tunnelling Technology,2019,56(4):56-61.
[5] 张振威,黄晓彬,陈何峰,等. 基于灰色长短时记忆网络融合模型的隧道沉降预测[J]. 河北工程大学学报(自然科学版),2021, 38(4):53-59. ZHANG Zhenwei,HUANG Xiaobin,CHEN Hefeng,et al. Prediction of Tunnel Settlement Based on Grey LSTM Neural Network Combined Model[J]. Journal of Hebei University of Engineering (Natural Science Edition),2021,38(4):53-59.
[6] 龚盛,杨柱,张国鹏,等. 基于优化BP神经网络算法的隧道岩土体力学参数分析方法研究[J]. 西北水电,2022(5):133-137. GONG Sheng,YANG Zhu,ZHANG Guopeng,et al. Study on Tunnel Geotechnical Physical Parameters Analysis Method Based on Optimized BP Neural Network Algorithm[J]. Northwest Hydropower,2022(5):133-137.
[7] 沈圣,肖力,张浩. 隧道下穿时基于傅里叶时间序列预测临近结构沉降发展[J]. 福州大学学报(自然科学版),2015,43(2):238-244. SHEN Sheng,XIAO Li,ZHANG Hao. A Forecasting Method Based on Fourier Time Series for Short-term Settlements in Adjacent Structures during an Under-passing Shield Tunnel Construction[J]. Journal of Fuzhou University (Natural Science Edition),2015,43(2):238-244.
[8] 范思遐,周奇才,熊肖磊,等. 基于粒子群与支持向量机的隧道变形预测模型[J]. 计算机工程与应用,2014,50(5):6-10,15. FAN Sixia,ZHOU Qicai,XIONG Xiaolei,et al. Tunnel Deformation Prediction Model Based on Support Vector Machine with Particle Swarm Optimization Algorithm[J]. Computer Engineering and Applications,2014,50(5):6-10,15.
[9] 龙熙华,贾宁娟,万军. 基于ANP-BP模型地铁隧道沉降预测研究[J]. 现代隧道技术,2013,50(5):105-111. LONG Xihua,JIA Ningjuan,WAN Jun. On Metro Tunnel Settlement Prediction by ANP-BP Based Models[J]. Modern Tunnelling
[10]谭衢霖,魏健,胡吉平. 基于小波神经网络的建筑工程沉降变形预测[J]. 应用基础与工程科学学报,2015,23(3):629-636. TAN Qulin,WEI Jian,HU Jiping. Building Deformation Prediction Based on Wavelet Analysis and BP Neural Network[J]. Journal of Basic Science and Engineering,2015,23(3):629-636.
[11]赵凤阳. 小波神经网络在隧道施工沉降预测中的应用[J]. 测绘科学,2016,41(12):283-287. ZHAO Fengyang. Application of Wavelet Neural Network in the Monitoring of Tunnel Settlement[J]. Science of Surveying and Mapping,2016,41(12):283-287.
[12]吴承彬. 基于人工蜂群算法的隧道沉降预测法设计[J]. 粘接, 2022,49(11):136-139. WU Chengbin. Design of Tunnel Settlement Prediction Method Based on Artificial Bee Colony Algorithm[J]. Adhesion,2022,49(11):136-139.
[13]余健,郭平. 基于改进小波神经网络的网络流量预测研究[J].计算机应用,2007,27(12):2986-2988. YU Jian,GUO Ping. Study on Network Traffic Forecast Based on Improved Wavelet Neural Network[J]. Journal of Computer Applications,2007,27(12):2986-2988.
[14]陈伟栋. 改进人工蜂群算法在城市医院布局中的应用研究[D].马鞍山:安徽工业大学,2018. CHEN Weidong. Improved Artificial Bee Colony Algorithm for City Hospital Layout Research[D]. Maanshan:Anhui University of Technology,2018.
[15]梁禹. 一种基于互学习的高维蜂群优化算法研究[D]. 大连:大连理工大学,2014. LIANG Yu. The Study of Artificial Bee Colony Algorithm for High Dimensional Optimization Based on Mutual Learning[D]. Dalian:Dalian University of Technology,2014.
[16]周新宇,胡建成,吴艳林,等. 基于适应度分组的多策略人工蜂群算法[J]. 模式识别与人工智能,2022,35(8):688-700. ZHOU Xinyu,HU Jiancheng,WU Yanlin,et al. A Multi-strategy Artificial Bee Colony Algorithm Based on Fitness Grouping[J]. Pattern Recognition and Artificial Intelligence,2022,35(8):688-700.
[17]刘路,王太勇. 基于人工蜂群算法的支持向量机优化[J]. 天津大学学报,2011,44(9):803-809. LIU Lu,WANG Taiyong. Support Vector Machine Optimization Based on Artificial Bee Colony Algorithm[J]. Journal of Tianjin University,2011,44(9):803-809.
[18]王嵘冰,徐红艳,李波,等. BP神经网络隐含层节点数确定方法研究[J]. 计算机技术与发展,2018,28(4):31-35. WANG Rongbing,XU Hongyan,LI Bo,et al. Research on Method of Determining Hidden Layer Nodes in BP Neural Network[J]. Computer Technology and Development,2018,28(4):31-35.
[19]杨飞,王洋. 基于改进自然选择粒子群算法的铁路客运量组合预测研究[J]. 高速铁路技术,2022,13(6):63-68,73. YANG Fei,WANG Yang. Study on Combination Forecast of Railway Passenger Volume by Improved Particle Swarm Optimization Algorithm Based on Natural Selection[J]. High Speed Railway Technology,2022,13(6):63-68,73.
[20]李孝勇,赵敏,徐春艳,等. 基于非线性Lamb波的高速列车螺栓松动检测[J]. 高速铁路技术,2022,13(5):31-35,48. LI Xiaoyong,ZHAO Min,XU Chunyan,et al. Detecting Looseness of Bolts of High-speed Trains Based on Nonlinear Lamb Wave[J]. High Speed Railway Technology,2022,13(5):31-35,48.

备注/Memo

备注/Memo:
收稿日期:2023-04-13
作者简介:张亚辉(1989-),男,副教授。
基金项目:国家自然科学基金青年基金资助项目(52108378);河北省自然科学基金资助项目(E2020210068);青年人才托举工程(2021QNRC001)
更新日期/Last Update: 2024-08-30