[1]赵思为,金俊俊,赵文龙.艰险山区阵列式三维音频大地电磁勘探方法与应用[J].高速铁路技术,2024,15(04):63-68.[doi:10.12098/j.issn.1674-8247.2024.04.012]
ZHAO Siwei,JIN Junjun,ZHAO Wenlong.An Array-based 3D Audio-frequency Geophysical Exploration Method and Its Application in Challenging Mountainous Areas[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(04):63-68.[doi:10.12098/j.issn.1674-8247.2024.04.012]
点击复制
艰险山区阵列式三维音频大地电磁勘探方法与应用()
《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]
- 卷:
-
15卷
- 期数:
-
2024年04期
- 页码:
-
63-68
- 栏目:
-
研究创新
- 出版日期:
-
2024-08-30
文章信息/Info
- Title:
-
An Array-based 3D Audio-frequency Geophysical Exploration Method and Its Application in Challenging Mountainous Areas
- 文章编号:
-
1674-8247(2024)04-0063-06
- 作者:
-
赵思为; 金俊俊; 赵文龙
-
中铁二院工程集团有限责任公司,成都 610031
- Author(s):
-
ZHAO Siwei; JIN Junjun; ZHAO Wenlong
-
China Railway Eryuan Engineering Group Co. ,Ltd. ,Chengdu? 610031 ,China
-
- 关键词:
-
大跨度硐室; 音频大地电磁法; 阵列式三维测线; 铁路隧道勘察
- Keywords:
-
large-span chambers; audio-frequency magnetotelluric method; array-based 3D profile lines; railway tunnel exploration
- 分类号:
-
P631.3+25
- DOI:
-
10.12098/j.issn.1674-8247.2024.04.012
- 文献标志码:
-
A
- 摘要:
-
艰险山区是铁路工程勘探领域的重难点。地球物理方法具有设备轻便、施工效率高、成果直观的特点,适合艰险山区的探测工作。大跨度硐室横向范围宽,单条物探测线难以满足勘探精度要求。为此,本文介绍了适用于艰险山区大跨度硐室勘察的阵列式三维音频大地电磁勘探方法,该方法测线布置综合考虑了隧道埋深、硐室跨度,以及测点分布均匀性和边缘效应对探测精度的影响,有效提高了外业资料质量,通过联合反演构建了详实的地下三维视电阻率数据体,可直观反映地下地质体异常空间展布情况。研究成果有效揭示了破碎富水岩体地下空间赋存形态,为隧道施工设计提供了参考。
- Abstract:
-
Exploration in challenging mountainous areas,as recognized for its significant difficulty,is always taken as an important subject in railway engineering. Geophysical methods,characterized by portability,high operational efficiency,and intuitive data representation,are applicable to investigations in such difficult terrains. Large-span chambers,with their extensive lateral extents,cannot be adequately surveyed by a single geophysical profile line,demanding higher precision approaches. This paper presented an array-based 3D audio-frequency magnetotelluric exploration method tailored for investigating large-span chambers in challenging mountainous areas. The profile line layout comprehensively considers tunnel depth,chamber span,uniformity of measurement point distribution,and the impact of edge effects on exploration accuracy,thereby significantly enhancing the quality of field data. Through joint inversion,a detailed 3D apparent resistivity database was constructed,visually illustrating the spatial distribution of underground geological anomalies. The study outcomes effectively reveal the morphology of fractured and water-rich rock masses beneath the surface,providing valuable references for tunnel construction designs.
参考文献/References:
[1] 陈明浩,李东. 遂渝铁路二线复杂隧道工程地质勘察分析研究[J]. 路基工程,2009(3):177-178. CHEN Minghao,LI Dong. Analysis and Research on Engineering Geological Survey of Complex Tunnel in Suining-Chongqing Railway Second Line[J]. Subgrade Engineering,2009(3):177-178.
[2] 李坚. 铁路隧道物探模式探讨[J]. 铁道工程学报,2013,30(2):63-68,103. LI Jian. Discussion of Geophysical Exploration Pattern for the Railway Tunnel[J]. Journal of Railway Engineering Society,2013,30(2):63-68,103.
[3] 蔡盛,陈洪杰. 综合物探技术在深埋隧道勘探中的应用[J]. 高速铁路技术,2018,9(S1):127-130. CAI Sheng,CHEN Hongjie. Application of Comprehensive Geophysical Prospecting Technology in Deep-buried Tunnel Exploration[J]. High Speed Railway Technology,2018,9(S1):127-130.
[4] 邹远华,王朋,周航,等. 藏东南某隧道水文地质特征及突涌水危险性评价[J]. 高速铁路技术,2022,13(2):37-42. ZOU Yuanhua,WANG Peng,ZHOU Hang,et al. Hydrogeological Characteristics of a Tunnel in Southeastern Tibet and Risk Assessment of Water Burst[J]. High Speed Railway Technology,2022,13(2):37-42.
[5] 朱廷宇,王唤龙. TBM穿越富水构造风化破碎带脱困处理方案研究[J]. 高速铁路技术,2021,12(4):103-110.ZHU Tingyu,WANG Huanlong. Countermeasures of Jammed TBM in Shattered Weathered Zone of Water-rich Structure[J]. High Speed Railway Technology,2021,12(4):103-110.
[6] 任政勇,柳建新,岳国璇,等. 重力与磁法在有色金属矿产勘探中的研究进展[J]. 中国有色金属学报,2023,33(1):240-260. REN Zhengyong,LIU Jianxin,YUE Guoxuan,et al. Research Progress of Gravity and Magnetic Method in Nonferrous Metal Minerals Exploration[J]. The Chinese Journal of Nonferrous Metals,2023, 33(1):240-260.
[7] 陈同俊,崔若飞,郎玉泉,等. 煤田采区三维地震精细构造解释方法[J]. 地球物理学进展,2007,22(2):573-578. CHEN Tongjun,CUI Ruofei,LANG Yuquan,et al. Detail Structural Interpretation Methods of Coal 3D Seismic[J]. Progress in Geophysics,2007,22(2):573-578.
[8] 丁志强,李飞,袁桂琴. 矿产普查中航空电磁异常的查证综合解释[J]. 桂林理工大学学报,2018,38(4):726-731. DING Zhiqiang,LI Fei,YUAN Guiqin. Comprehensive Interpretation of Airborne Electromagnetic Anomaly Verification in Mineral Prospecting[J]. Journal of Guilin University of Technology,2018, 38(4):726-731.
[9] 何继善. 大深度高精度广域电磁勘探理论与技术[J]. 中国有色金属学报,2019,29(9):1809-1816. HE Jishan. Theory and Technology of Wide Field Electromagnetic Method[J]. The Chinese Journal of Nonferrous Metals,2019,29(9):1809-1816.
[10]张弛. 大地电磁数据质量评价与阻抗估计[D]. 长沙:中南大学, 2013. ZHANG Chi. Magnetotelluric Data Quality Assessment and Impedance Estimation[D]. Changsha:Central South University, 2013.
备注/Memo
- 备注/Memo:
-
收稿日期:2023-08-30
作者简介:赵思为(1982-),男,高级工程师。
更新日期/Last Update:
2024-08-30