[1]邹和兵,宋章,陶玉敬,等.川西北某隧道涌水量及水压力分析[J].高速铁路技术,2024,15(04):87-93.[doi:10.12098/j.issn.1674-8247.2024.04.016]
 ZOU Hebing,SONG Zhang,TAO Yujing,et al.Analysis of Water Inflow Volume and Water Pressure in a Tunnel Located in Northwest Sichuan[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(04):87-93.[doi:10.12098/j.issn.1674-8247.2024.04.016]
点击复制

川西北某隧道涌水量及水压力分析()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
15卷
期数:
2024年04期
页码:
87-93
栏目:
勘察设计
出版日期:
2024-08-30

文章信息/Info

Title:
Analysis of Water Inflow Volume and Water Pressure in a Tunnel Located in Northwest Sichuan
文章编号:
1674-8247(2024)04-0087-07
作者:
邹和兵1宋章1陶玉敬1周航1李鸣荣2
1.中铁二院工程集团有限责任公司,成都 610031;2.云南省交通规划设计研究院股份有限公司,昆明 650041
Author(s):
ZOU Hebing1SONG Zhang1TAO Yujing1ZHOU Hang1LI Mingrong2
1.China Railway Eryuan Engineering Group Co. ,Ltd. ,Chengdu 610031 ,China;2.Yunnan Institute of Transportation Planning and Design Co. ,Ltd. ,Kunming 650041 ,China
关键词:
隧道川西北水文地质涌水量水压力强降雨
Keywords:
tunnelnorthwest Sichuanhydrogeologywater inflowwater pressureheavy rainfall
分类号:
TU456.3+2
DOI:
10.12098/j.issn.1674-8247.2024.04.016
文献标志码:
A
摘要:
川西北某隧道工程区构造发育、岩体破碎、水压高,隧道施工和运营面临严峻考验。为了研究涌水量及水压力对隧道施工和运营的影响,对隧址区开展了地质勘探,并采用理论计算和有限元模拟分析了隧道施工期和运营期的涌水量、水压力分布。研究结果表明:(1)隧址区水文地质单元内岩性为非可溶岩,地下水属于中等含水岩层的基岩裂隙水;受构造作用的影响,地层岩体裂隙发育,为地下水渗流提供了良好的通道;隧址区内地下水主要补给来源为大气降水,多年平均降雨量约620mm,最大降雨量约1034mm;(2)隧道全长正常涌水量约为6940m3/d,最大涌水量约为11610m3/d;(3)隧道开挖后,上方围岩产生降水漏斗,地下水部分流失,而强降雨天气导致地下水位大幅增长;(4)随着水头高度的增大,隧道水压力和涌水量剧增,威胁隧道结构的安全。隧道的防排水结构与衬砌设计需考虑强降雨天气的影响。
Abstract:
The work area of a tunnel in northwest Sichuan is characterized by active tectonics,heavily fractured rock masses,and high water pressure,posing severe challenges for both construction and operation of the tunnel. To investigate the impacts of water inflow and water pressure on tunnel construction and operation,geological explorations were conducted in the tunnel site,followed by theoretical calculations and finite element simulations to analyze the water inflow volume and water pressure distribution during both construction and operational phases. The findings are summarized as follows:(1)The rocks within the hydrogeological units of the tunnel site are non-soluble rocks,with groundwater classified as fissure water in moderately water-bearing rock strata. Due to tectonic activities,the rock masses are extensively fractured,providing favorable conduits for groundwater seepage. The primary recharge source of groundwater in the tunnel site is precipitation,with an annual average rainfall of approximately 620 mm and a maximum recorded rainfall of around 1 034 mm. (2)The normal water inflow for the entire tunnel is estimated at about 6 940 m3 /d,with a maximum potential inflow of up to 11 610 m3 /d. (3)Following tunnel excavation,a precipitation funnel forms above the rock over the tunnel,leading to partial loss of groundwater,while heavy rainfall events significantly elevate the groundwater level. (4)As the water head height increases,a substantial surge in tunnel water pressure and inflow is observed,threatening the structural safety of the tunnel. The design of drainage and waterproofing structures,as well as tunnel lining,shall take into account the effects of heavy rainfall.

参考文献/References:

[1] 田四明,王伟,杨昌宇,等. 中国铁路隧道40年发展与展望[J].隧道建设(中英文),2021,41(11):1903-1930. TIAN Siming,WANG Wei,YANG Changyu,et al. Development and Prospect of Railway Tunnels in China in Recent 40 Years[J]. Tunnel Construction,2021,41(11):1903-1930.
[2] 周航,陈仕阔,刘彤,等. 复杂山区深埋隧道软岩大变形机理研究:以杨家坪隧道为例[J]. 工程地质学报,2022,30(3):852-862. ZHOU Hang,CHEN Shikuo,LIU Tong,et al. Large Deformation Mechanism of Soft Rock Surrounding Tunnel Deep Buried in Complex Mountainous:a Case Study of Yangjiaping Tunnel[J]. Journal of Engineering Geology,2022,30(3):852-862.
[3] 白明洲,陈云,师海. 山岭隧道施工诱发地下水位下降环境风险评价[J]. 铁道工程学报,2016,33(1):5-10,15. BAI Mingzhou,CHEN Yun,SHI Hai. Environmental Risk Assessment of Underground Water Level Falling Induced by Construction in Mountain Tunnel[J]. Journal of Railway Engineering Society, 2016,33(1):5-10,15.
[4] 李晓军,徐昊,Gokdemir Cagri,等. 隧道排水诱发地下水位下降对地表植被影响的TSPAC分析方法[J]. 隧道建设(中英文), 2020,40(9):1261-1271. LI Xiaojun,XU Hao,CAGRI G,et al. TSPAC Analysis Method for Impact of Groundwater Drawdown Induced by Tunnel Drainage on Terrestrial Vegetation[J]. Tunnel Construction,2020,40(9):1261-1271.
[5] 肖泽荣. 基于地下水生态平衡埋深的隧道排水量设计计算[J].隧道建设(中英文),2020,40(10):1471-1479. XIAO Zerong. Design and Calculation of Tunnel Drainage Based on Ecological Equilibrium Embedment Depth of Groundwater[J]. Tunnel Construction,2020,40(10):1471-1479.
[6] 郭鸿雁,纪亚英,方林,等. 基于流固耦合分析的富水隧道外水压力与限量排放标准研究[J]. 岩土工程学报,2019,41(S1):165-168. GUO Hongyan,JI Yaying,FANG Lin,et al. Study on External Water Pressure and Limited Discharge Standard of Water-rich Tunnel Based on Fluid-solid Coupling Analysis[J]. Chinese Journal of Geotechnical Engineering,2019,41(S1):165-168.
[7] 陈国栋. 城际铁路矿山法隧道防排水体系探讨[J]. 高速铁路技术,2022,13(3):45-51. CHEN Guodong. Discussion on Water Handling System for Mined Tunnels of Intercity Railway[J]. High Speed Railway Technology, 2022,13(3):45-51.
[8] 樊浩博,周定坤,刘勇,等. 富水管道型岩溶隧道衬砌结构力学响应特征研究[J]. 岩土力学,2022,43(7):1884-1898. FAN Haobo,ZHOU Dingkun,LIU Yong,et al. Mechanical Response Characteristics of Lining Structure of Pipeline Karst Tunnels in Water-rich Areas[J]. Rock and Soil Mechanics,2022,43(7):1884-1898.
[9] 尚海松,郑波,郭瑞. 岩溶富水隧道水压变化引起的结构力学响应及防治措施[J]. 现代隧道技术,2020,57(S1):374-381. SHANG Haisong,ZHENG Bo,GUO Rui. Structural Mechanical Response Caused by Water Pressure Change in Karst Water-rich Tunnel and Its Prevention Measures[J]. Modern Tunnelling Technology,2020,57(S1):374-381.
[10]郭瑞,郑波,吴剑,等. 降雨过程中隧道衬砌水压力的动态规律研究[J]. 铁道工程学报,2023,40(5):75-81. GUO Rui,ZHENG Bo,WU Jian,et al. Research on the Dynamic Law of Water Pressure in Tunnel Lining during Rainfall[J]. Journal of Railway Engineering Society,2023,40(5):75-81.
[11]曹艳妮. 溶岩与非溶岩地区隧道排水系统堵塞机理[J]. 高速铁路技术,2023,14(4):35-39. CAO Yanni. Blockage Mechanism of Tunnel Drainage System in Karst and Non-karst Areas[J]. High Speed Railway Technology,2023, 14(4):35-39.

相似文献/References:

[1]汪勇.巨型溶洞松散回填体内超大断面隧道修建技术[J].高速铁路技术,2023,14(02):43.[doi:10.12098/j.issn.1674-8247.2023.02.009]
 WANG Yong.Construction Technology of Super-large Section Tunnel in Loose Backfill of Giant Karst Cave[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(04):43.[doi:10.12098/j.issn.1674-8247.2023.02.009]
[2]王青川,刘 科,刘雄伟.高速铁路隧道穿越大型溶洞勘察及工程整治技术[J].高速铁路技术,2023,14(04):108.[doi:10.12098/j.issn.1674-8247.2023.04.020]
 WANG Qingchuan,LIU Ke,LIU Xiongwei.Investigation and Engineering Renovation Technology of High-speed Railway Tunnel Crossing Large Karst Cave[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(04):108.[doi:10.12098/j.issn.1674-8247.2023.04.020]
[3]杨星智,冀胜利,李曙光,等.高速铁路隧道轨道板上拱切割落道施工技术[J].高速铁路技术,2024,15(03):110.[doi:10.12098/j.issn.1674-8247.2024.03.020]
 YANG Xingzhi,JI Shengli,LI Shuguang,et al.A Technology for Upwarped Track Slab Cutting and Track Lowering in High-speed Railway Tunnels[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(04):110.[doi:10.12098/j.issn.1674-8247.2024.03.020]
[4]周 航,杜宇本,宋章,等.川西北某泥石流沟发育特征及易发性评价[J].高速铁路技术,2024,15(02):27.[doi:10.12098/j.issn.1674-8247.2024.02.005]
 ZHOU Hang,DU Yuben,SONG Zhang,et al.Development Characteristics and Susceptibility Evaluation of a Certain Debris Flow Gully in the Northwestern Sichuan[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(04):27.[doi:10.12098/j.issn.1674-8247.2024.02.005]
[5]强新刚,袁东,何平,等.隧道突出气体特征及形成机理研究[J].高速铁路技术,2024,15(02):39.[doi:10.12098/j.issn.1674-8247.2024.02.007]
 QIANG Xingang,YUAN Dong,HE Ping,et al.Study on Characteristics and Formation Mechanisms of Tunnel Gas Outbursts[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(04):39.[doi:10.12098/j.issn.1674-8247.2024.02.007]

备注/Memo

备注/Memo:
收稿日期:2023-11-15
作者简介:邹和兵(1985-),男,工程师。
基金项目:云南省科技厅科技重点研发计划项目(202303AA080005);中铁二院工程集团有限责任公司科研项目(KDNQ202006;KDNQ202008)
更新日期/Last Update: 2024-08-30