[1]王仕兴,赵思为,尹小康.半航空频率域电磁法针对铁路勘察的研究进展[J].高速铁路技术,2024,15(05):1-7,15.[doi:10.12098/j.issn.1674-8247.2024.05.001]
 WANG Shixing,ZHAO Siwei,YIN Xiaokang.Research Progress on Semi-aerial Frequency-domain Electromagnetic Method for Railway Surveying[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(05):1-7,15.[doi:10.12098/j.issn.1674-8247.2024.05.001]
点击复制

半航空频率域电磁法针对铁路勘察的研究进展()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
15卷
期数:
2024年05期
页码:
1-7,15
栏目:
理论探索
出版日期:
2024-10-30

文章信息/Info

Title:
Research Progress on Semi-aerial Frequency-domain Electromagnetic Method for Railway Surveying
文章编号:
1674-8247(2024)05-0001-07
作者:
王仕兴赵思为尹小康
(中铁二院工程集团有限责任公司, 成都 610031)
Author(s):
WANG ShixingZHAO SiweiYIN Xiaokang
(China Railway Eryuan Engineering Group Co., Ltd., Chengdu 610031,China)
关键词:
铁路勘察 高原艰险山区 半航空频率域电磁法
Keywords:
Key words:railway surveying plateau and rugged mountainous areas semi-aerial frequency-domain electro-magnetic method
分类号:
U452.1
DOI:
10.12098/j.issn.1674-8247.2024.05.001
文献标志码:
A
摘要:
随着我国铁路网的不断扩展,在高原及艰险山区构建铁路网已成必然。然而,因地势陡峭,部分线位人员无法抵达,常导致关键勘察数据缺失。为解决这一问题,从传统地面勘察转向空中,采用地球物理技术与无人机技术相结合的半航空频率域电磁法。针对高原艰险山区长大深埋隧道的勘察需求,团队自主设计研发了半航空电磁硬件系统,通过与地面方法的同精度对比验证,其结果一致性达到90%以上。该技术成功应用于某隧道测区的勘察任务,弥补了因地势陡峭导致的勘察数据空白,有效降低了勘察成本,显著提高了工作效率,为我国铁路勘察工作提供了新的技术路径与方法。
Abstract:
As China's railway network continues to expand, constructing railways in plateau regions and rugged mountainous areas has become a necessity. However, due to steep terrain, certain sections remain inaccessible to field personnel, resulting in gaps in critical survey data. To address this challenge, a shift from traditional ground surveying to aerial surveying has been made.A semi-aerial frequency-domain electromagnetic(FEM)method that combines geophysical technology with drone technology was employed. In response to the demand for surveying long, deeply-buried tunnels in these challenging terrains, we independently designed and developed a semi-aerial electromagnetic hardware system. When compared with ground-based methods, the system demonstrated a consistency exceeding 90%. This technology has been successfully applied in the survey of a specific tunnel area, filling in the data gaps caused by steep terrain. The method significantly reduces survey costs, enhances operational efficiency, and offers a novel technological pathway for railway surveying in China.

参考文献/References:

[1] 张营旭, 张广泽, 蒋帅, 等. 复杂艰险山区铁路隧道精细化工程地质勘察研究[J]. 高速铁路技术, 2023, 14(6): 78-83.
ZHANG Yingxu, ZHANG Guangze, JIANG Shuai, et al. A Study on Detailed Geological Investigation of Railway Tunnel in Challenging Mountain Area[J]. High Speed Railway Technology, 2023, 14(6): 78-83.
[2] 赵思为, 金俊俊, 赵文龙. 艰险山区阵列式三维音频大地电磁勘探方法与应用[J]. 高速铁路技术, 2024, 15(4): 63-68.
ZHAO Siwei, JIN Junjun, ZHAO Wenlong. An Array-based 3D Audio-frequency Geophysical Exploration Method and Its Application in Challenging Mountainous Areas[J]. High Speed Railway Technology, 2024, 15(4): 63-68.
[3] 樊邦奎, 李云, 张瑞雨. 浅析低空智联网与无人机产业应用[J]. 地理科学进展, 2021, 40(9): 1441-1450.
FAN Bangkui, LI Yun, ZHANG Ruiyu. Initial Analysis of Low-altitude Internet of Intelligences(IOI)and the Applications of Unmanned Aerial Vehicle Industry[J]. Progress in Geography, 2021, 40(9): 1441-1450.
[4] 王堃鹏, 罗威, 曹辉, 等. 无人机频率域半航空电磁法三维反演[J]. 地球物理学报, 2021, 64(5): 1759-1773.
WANG Kunpeng, LUO Wei, CAO Hui, et al. 3-D Inversion of UAV Semi-airborne Electromagnetic Method in Frequency Domain[J]. Chinese Journal of Geophysics, 2021, 64(5): 1759-1773.
[5] 林君, 薛国强, 李貅. 半航空电磁探测方法技术创新思考[J]. 地球物理学报, 2021, 64(9): 2995-3004.
LIN Jun, XUE Guoqiang, LI Xiu. Technological Innovation of Semi-airborne Electromagnetic Detection Method[J]. Chinese Journal of Geophysics, 2021, 64(9): 2995-3004.
[6] 王仕兴, 何可, 尹小康, 等. 半航空瞬变电磁一维聚焦反演研究[J]. 物探与化探, 2023, 47(2): 410-419.
WANG Shixing, HE Ke, Yin Xiaokang, et al. One-dimensional Focusing Inversion of the Semi-airborne Transient Electromagnetic Method and Its Application[J]. Geophysical and Geochemical Exploration, 2023, 47(2): 410-419.
[7] Mogi T, Tanaka Y, Kusunoki K, et al. Development of Grounded Electrical Source Airborne EM(GREATE)[J]. Exploration Geophysics, 1998, 29: 161-164.
[8] Mogi T, Kusunoki K, Kaieda H, et al. Grounded Electrical-source Airborne Transient Electromagnetic(GREATEM)Survey of Mount Bandai, North-Eastern Japan[J]. Exploration Geophysics, 2009, 40: 1-7.
[9] 嵇艳鞠, 王远, 徐江, 等. 无人飞艇长导线源时域地空电磁勘探系统及其应用[J]. 地球物理学报, 2013, 56(11): 3640-3650.
JI Yanju, WANG Yuan, XU Jiang, et al. Development and Application of the Grounded Long Wire Source Airborne Electromagnetic Exploration System Based on an Unmanned Airship[J]. Chinese Journal of Geophysics, 2013, 56(11): 3640-3650.
[10] 刘富波, 李巨涛, 刘丽华, 等. 无人机平台半航空瞬变电磁勘探系统及其应用[J]. 地球物理学进展, 2017, 32(5): 2222-2229.
LIU Fubo, LI Jutao, LIU Lihua, et al. Development and Application of a New Semi-airborne Transient Electromagnetic System with UAV Platform[J]. Progress in Geophysics, 2017, 32(5): 2222-2229.
[11] 王仕兴, 易国财, 王绪本, 等. 基于分段二分搜索算法的半航空瞬变电磁电导率深度快速成像方法研究[J]. 地球物理学进展, 2021, 36(3): 1317-1324.
WANG Shixing, YI Guocai, WANG Xuben, et al. Research on the Semi-airborne Transient Electromagnetic Conductivity Depth Rapid Imaging Method Based on Segmented Binary Search Algorithm[J]. Progress in Geophysics, 2021, 36(3): 1317-1324.
[12] DE GROOT-HEDLIN C, CONSTABLE S. Occam's Inversion to Generate Smooth, Two-dimensional Models from Magnetotelluric Data[J]. Geophysics, 1990, 55(12): 1613-1624.
[13] RODI W, MACKIE R L. Nonlinear Conjugate Gradients Algorithm for 2-D Magnetotelluric Inversion[J]. Geophysics, 2001, 66(1): 174-187.
[14] 康敏, 胡祥云, 康健, 等. 大地电磁二维反演方法分析对比[J]. 地球物理学进展, 2017, 32(2): 476-486.
KANG Min, HU Xiangyun, KANG Jian, et al. Compared of Magnetotelluric 2D Inversion Methods[J]. Progress in Geophysics, 2017, 32(2): 476-486.
[15] SMITH R S, ANNAN A P, MCGOWAN P D. A Comparison of Data from Airborne, Semi-Airborne, and Ground Electromagnetic Systems[J]. Geophysics, 2001, 66(5): 1379-1385.

备注/Memo

备注/Memo:
收稿日期:2024-10-08
作者简介:王仕兴(1997-),男,工程师。
基金项目:中铁二院工程集团有限责任公司科研项目(KDNQ203001)
更新日期/Last Update: 2024-10-30