[1]余志松,冉逸涵,肖世国,等.成都平原典型土石混合填土地基的强夯试验[J].高速铁路技术,2024,15(05):24-29,47.[doi:10.12098/j.issn.1674-8247.2024.05.004]
 YU Zhisong,RAN Yihan,XIAO Shiguo,et al.Dynamic Compaction Test on Typical Soil-rock Mixture Filled Foundation in Chengdu Plain[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(05):24-29,47.[doi:10.12098/j.issn.1674-8247.2024.05.004]
点击复制

成都平原典型土石混合填土地基的强夯试验()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
15卷
期数:
2024年05期
页码:
24-29,47
栏目:
理论探索
出版日期:
2024-10-30

文章信息/Info

Title:
Dynamic Compaction Test on Typical Soil-rock Mixture Filled Foundation in Chengdu Plain
文章编号:
1674-8247(2024)05-0024-06
作者:
余志松1冉逸涵2肖世国2 3程晓斌1
(1.成都建工第八建筑工程有限公司, 成都 610081; 2.西南交通大学, 成都 610031; 3.西南交通大学高速铁路线路工程教育部重点实验室, 成都 610031)
Author(s):
YU Zhisong1RAN Yihan2XIAO Shiguo23CHENG Xiaobin1
(1.Chengdu Eighth Construction Engineering of CDCEG, Chengdu 610081, China; 2.Southwest Jiaotong University,Chengdu 610031, China; 3.MOE Key Laboratory of High-speed Railway Engineering,Southwest Jiaotong University, Chengdu 610031,China)
关键词:
强夯法 土石混合填土 现场试验 沉降量 动应力
Keywords:
dynamic compaction method soil-rock mixture filling field test settlement dynamic stress
分类号:
TU472.3
DOI:
10.12098/j.issn.1674-8247.2024.05.004
文献标志码:
A
摘要:
为掌握在高能级夯击作用下成都平原地区的土石混合填土地基的力学行为特征,采用现场点夯与满夯试验方法,测试强夯作用过程中地基沉降量和土体动应力,确定夯沉量与夯击次数的关系。结果表明:(1)该土石混合填土地基沉降量的增长速率随夯击次数的增大逐步非线性减小,在4 000 kN·m夯击能作用下的最佳夯击次数为10次;(2)地基中动应力随竖向深度或距夯击点径向距离的增加呈非线性减小,动应力沿径向的平均衰减梯度大于沿深度的平均衰减梯度,锤径范围内的径向动应力衰减梯度大于锤径范围外的衰减梯度;(3)土体有效加固深度与夯击能显著相关;(4)等效拟静力法的强夯动应力估算值为实测值的0.48~0.73 倍。研究成果可为类似混合填土地基的强夯技术提供参考。
Abstract:
To understand the mechanical behavior characteristics of soil-rock mixture filled foundations in the Chengdu Plain under high-energy compaction, field tests including single-point compaction and full-area compaction were conducted. The settlement of the foundation and dynamic stress in the soil during the dynamic compaction process were measured to establish the relationship between the settlement and the number of blows. The test results indicate that:(1)The growth rate of settlement in the soil-rock mixture filled foundation gradually decreases nonlinearly with an increasing number of blows, and the optimal number of blows under a compaction energy of 4 000 kN·m is 10 times.(2)The dynamic stress in the foundation decreases nonlinearly with increasing vertical depth or radial distance from the compaction point, with the average attenuation gradient along the radial direction being greater than that along the depth. The attenuation gradient of radial dynamic stress within the hammer diameter is more significant than that outside the hammer diameter.(3)The effective reinforcement depth of the soil is significantly correlated with the compaction energy.(4)The estimated dynamic stress values obtained using the equivalent quasi-static method are 0.48 to 0.73 times the measured values. The research findings provide a reference for dynamic compaction techniques applied to similar mixed-fill foundations.

参考文献/References:

[1] 黄锐. 四川盆地软基特性及处治方案决策模型研究[D]. 成都: 西南交通大学, 2011.
HUANG Rui. Research on Engineering Properties and Decision Model of Treatment Scheme of Soft Soil of Sichuan Basin[D].Chengdu: Southwest Jiaotong University, 2011.
[2] 吕孟懿. 成渝经济区地质灾害发育特征及典型地质灾害分析[D]. 成都: 成都理工大学, 2014.
LV Mengyi. Chengdu-Chongqing Economic Zone Development Features of Geological Disasters and the Analysis of Typical Geological Disaster[D].Chengdu: Chengdu University of Technology, 2014.
[3] 孔令伟, 袁建新. 强夯时地基土的应力场分布特征及应用[J]. 岩土力学, 1999, 20(3): 13-19, 23.
KONG Lingwei, YUAN Jianxin. Stress Field Distribution Characteristics of Foundation during Dynamic Consolidation and Its Application[J]. Rock and Soil Mechanics, 1999, 20(3): 13-19, 23.
[4] 韩文喜, 张倬元, 李强. 强夯加固砂土软土地基的数值模拟[J]. 山地学报, 2000, 18(S1): 88-93.
HAN Wenxi, ZHANG Zhuoyuan, LI Qiang. Numerical Simulation of Dynamic Consolidation of Sandy Soft Soil Foundation[J]. Mountain Research, 2000, 18(S1): 88-93.
[5] 钱家欢, 钱学德, 赵维炳, 等. 动力固结的理论与实践[J]. 岩土工程学报, 1986, 8(6): 1-17.
QIAN Jiahuan, QIAN Xuede, ZHAO Weibing, et al. Theory and Practice of Dynamic Conslidation[J]. Chinese Journal of Geotechnical Engineering, 1986, 8(6): 1-17.
[6] 张清峰, 王东权. 煤矸石地基在强夯冲击荷载作用下的物理模型试验研究[J]. 岩石力学与工程学报, 2013, 32(5): 1049-1056.
ZHANG Qingfeng, WANG Dongquan. Physical Model Tests of Coal Gangue Foundation under Dynamic Compaction Loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(5): 1049-1056.
[7] 张清峰, 王东权. 强夯法加固煤矸石地基动应力模型试验研究[J]. 岩土工程学报, 2012, 34(6): 1142-1147.
ZHANG Qingfeng, WANG Dongquan. Model Tests on Dynamic Stress in Colliery Wastes Improved by Dynamic Compaction[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1142-1147.
[8] 李准, 徐涛, 颜欢. 软土地基强夯碎石墩施工方案及定额测定[J]. 高速铁路技术, 2020, 11(4): 79-83.
LI Zhun, XU Tao, YAN Huan. Construction Scheme and Quota Determination of Dynamic Compaction Gravel Pier on Soft Soil Foundation[J]. High Speed Railway Technology, 2020, 11(4): 79-83.
[9] 张健, 刘俊. 填石路堤强夯加固施工参数及路基动应力响应规律研究[J]. 铁道科学与工程学报, 2020, 17(1): 95-101.
ZHANG Jian, LIU Jun. Dynamic Stress Response Law and Construction Parameters Study of Rockfill Embankment under Dynamic Compaction[J]. Journal of Railway Science and Engineering, 2020, 17(1): 95-101.
[10] 张栋樑, 靳静, 张璐, 等. 高填方路堤强夯加固现场试验及数值模拟研究[J]. 公路交通科技(应用技术版), 2020, 16(8): 54-57.
ZHANG Dongliang, JIN Jing, ZHANG Lu, et al. Field Test and Numerical Simulation Study on Dynamic Compaction Reinforcement of High Fill Subgrade[J]. Highway and Transportation Research and Development(Applied Technology Edition), 2020, 16(8): 54-57.
[11] 黄达, 金华辉. 土石比对碎石土强夯地基加固效果影响规律瑞利波检测分析[J]. 岩土力学, 2012, 33(10): 3067-3072.
HUANG Da, JIN Huahui. Influences of Soil-rock Ratio on Foundation with Detritus Soil under Dynamic Compaction Based on Rayleigh Wave Detection[J]. Rock and Soil Mechanics, 2012, 33(10): 3067-3072.
[12] 张书铭, 燕永锋, 郑晓军. 抚仙湖东岸建设厂区碎石杂填土强夯方案比选研究[J]. 地质灾害与环境保护, 2022, 33(3): 85-89.
ZHANG Shuming, YAN Yongfeng, ZHENG Xiaojun. Comparison and Selection of Reinforcement Scheme of Dynamic Compaction of Miscellaneous Mountain Gravel[J]. Journal of Geological Hazards and Environment Preservation, 2022, 33(3): 85-89.
[13] 陈星欣, 白冰, 席连海. 冲击荷载作用下饱和粉土变形和强度试验[J]. 北京交通大学学报, 2011, 35(4): 73-77.
CHEN Xingxin, BAI Bing, XI Lianhai. Experimental Research on the Deformation and Strength of Saturated Silt Soil under Impact Load[J]. Journal of Beijing Jiaotong University, 2011, 35(4): 73-77.
[14] 水伟厚, 高广运, 吴延炜, 等. 湿陷性黄土在强夯作用下的非完全弹性碰撞与冲击应力解析[J]. 建筑结构学报, 2003, 24(5): 92-97.
SHUI Weihou, GAO Guangyun, WU Yanwei, et al. Non-perfect Elastic Collision and Impact Stress Analysis during Dynamic Compaction on Collapsible Loess[J]. Journal of Building Structures, 2003, 24(5): 92-97.
[15] JGJ 79-2012 建筑地基处理技术规范 [S].
JGJ 79-2012 Technical Code for Ground Treatment of Buildings [S].
[16] 王成华, 李腾. 等效拟静力法的发展与工程实践[J]. 建筑科学, 2015, 31(3): 131-134.
WANG Chenghua, LI Teng. Development and Engineering Practice of the Equivalent Pseudo-static Method[J]. Building Science, 2015, 31(3): 131-134.
[17] 刘汉龙, 高有斌, 曹建建, 等. 强夯作用下接触应力与土体竖向位移计算[J]. 岩土工程学报, 2009, 31(10): 1493-1497.
LIU Hanlong, GAO Youbin, CAO Jianjian, et al. Calculation of Contact Stress and Soil Vertical Displacement under Dynamic Compaction[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1493-1497.

备注/Memo

备注/Memo:
收稿日期:2023-06-15
作者简介:余志松(1976-),男,工程师。
基金项目:四川省交通运输科技项目(2020-A-01); 成都建工集团有限公司科技项目(TFSD-011)
更新日期/Last Update: 2024-10-30