[1]张玉华,李 澳,朱永辉,等.考虑焊接残余应力的钢轨铝热焊焊缝滚动接触应力分析[J].高速铁路技术,2024,15(05):59-66.[doi:10.12098/j.issn.1674-8247.2024.05.010]
 ZHANG Yuhua,LI Ao,ZHU Yonghui,et al.Analysis of Rolling Contact Stress in RailAluminothermic Weld Joints Considering Weld Residual Stress[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(05):59-66.[doi:10.12098/j.issn.1674-8247.2024.05.010]
点击复制

考虑焊接残余应力的钢轨铝热焊焊缝滚动接触应力分析()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
15卷
期数:
2024年05期
页码:
59-66
栏目:
研究创新
出版日期:
2024-10-30

文章信息/Info

Title:
Analysis of Rolling Contact Stress in RailAluminothermic Weld Joints Considering Weld Residual Stress
文章编号:
1674-8247(2024)05-0059-08
作者:
张玉华1李 澳2朱永辉3胡伟平2
(1.中国铁道科学研究院集团有限公司, 北京 100081; 2.北京航空航天大学; 北京100191; 3.中国铁路济南局集团有限公司, 济南 250001)
Author(s):
ZHANG Yuhua1LI Ao2ZHU Yonghui3HU Weiping2
(1.China Academy of Railway Sciences Corporation Limited, Beijing 100081, China; 2.Beihang University, Beijing 100191, China; 3.China Railway Jinan Bureau Group Co., Ltd., Jinan 250001,China)
关键词:
铝热焊 焊接热过程 焊接残余应力 滚动接触应力 有限元
Keywords:
aluminothermic welding welding thermal process weld residual stress rolling contact stress finite element
分类号:
U213+9.2; TG 457.1
DOI:
10.12098/j.issn.1674-8247.2024.05.010
文献标志码:
A
摘要:
铝热焊焊缝的滚动接触应力是钢轨滚动接触疲劳问题的关键影响因素。本文开展了静力拉伸试验研究母材与焊缝材料的基本力学性能,采用Chaboche塑性本构方程描述两种材料在塑性阶段的力学响应。利用ABAQUS计算了铝热焊焊接过程的温度场和残余应力场。建立了轮轨滚动接触应力分析的有限元计算模型,并将焊接残余应力分析与焊缝滚动接触应力相结合,提出了考虑焊接残余应力的轮轨滚动接触应力计算方法。最后,分析了焊缝局部应力场的特点。研究结果表明:(1)焊缝边缘处相比中心处承受更大的接触压力,残余应力的存在会增加焊缝的滚动接触应力以及焊缝边缘处的接触压力;(2)随着车轮滚动次数的增加,焊缝的塑性应变会不断累积,进而影响钢轨疲劳伤损的演化。
Abstract:
Rolling contact stress in aluminothermic weld joints plays a crucial role in rail rolling contact fatigue issues. In this study, static tensile tests were conducted to investigate the fundamental mechanical properties of parent rail material and weld metal. The Chaboche plastic constitutive equation was adopted to describe the mechanical response of both materials in the plastic regime. Utilizing ABAQUS software, the temperature field and residual stress field during the aluminothermic welding process were calculated. A finite element computational model was established to analyze rolling contact stress between wheel and rail, integrate the assessment of weld residual stress with the calculation of rolling contact stress in the weld zone. This led to the proposal of a method for calculating rail-wheel rolling contact stress that accounts for the presence of welding residual stress. Lastly, the characteristics of the local stress field within the weld were analyzed. The results show that:(1)The edges of the weld bear higher contact pressures compared to the center, and the presence of residual stress exacerbates rolling contact stress and contact pressure at the weld edges.(2)As the number of wheel revolutions increases, plastic strain accumulates in the weld, consequently influencing the evolution of rail fatigue damage.

参考文献/References:

[1] 江明明, 何柏林. 钢轨焊接方法与焊接接头的质量控制研究[J]. 热加工工艺, 2017, 46(13): 7-10, 6.
JIANG Mingming, HE Bolin. Investigation of Rail Welding Method and Quality Control of Welded Joint[J]. Hot Working Technology, 2017, 46(13): 7-10, 6.
[2] 张琪, 李力, 宋宏图, 等. 无缝线路钢轨焊接技术发展现状及趋势[J]. 热加工工艺, 2017, 46(3): 10-12.
ZHANG Qi, LI Li, SONG Hongtu, et al. Development Status and Trends of Seamless Rail Welding Technologies[J]. Hot Working Technology, 2017, 46(3): 10-12.
[3] 王磊. 铝热焊焊接常见的缺陷、成因及其质量控制[J]. 中小企业管理与科技(下旬刊), 2016(12): 163-164.
WANG Lei. Common Defects, Causes and Quality Control of THermite Welding[J]. Management & Technology of SME, 2016(12): 163-164.
[4] LIU Yang, TSANG K S, TAN ZHI'EN E, et al. Investigation on Material Characteristics and Fatigue Crack Behavior of THermite Welded Rail Joint[J]. Construction and Building Materials, 2021, 276: 122249.
[5] 杨璐, 卫璇, 张有振, 等. 不锈钢母材及其焊缝金属材料单拉本构关系研究[J]. 工程力学, 2018, 35(5): 125-130, 151.
YANG Lu, WEI Xuan, ZHANG Youzhen, et al. Research on the Tensile Stress-strain Relation of Stainless Steel Base Material and Its Weld Metal Material[J]. Engineering Mechanics, 2018, 35(5): 125-130, 151.
[6] 张超华, 王晓霞, 常茂椿, 等. 焊缝金属的屈服强度和材料的加工硬化对Q345钢焊接残余应力与变形计算精度的影响[J]. 机械工程学报, 2021, 57(10): 160-168.
ZHANG Chaohua, WANG Xiaoxia, CHANG Maochun, et al. Effects of Yield Strength of Weld Metal and Material Strain Hardening on Prediction Accuracy of Welding Residual Stress and Deformation in a Q345 Steel Joint[J]. Journal of Mechanical Engineering, 2021, 57(10): 160-168.
[7] LIU Yang, TSANG K S, HOH H J, et al. Structural Fatigue Investigation of Transverse Surface Crack Growth in Rail Steels and THermite Welds Subjected to In-plane and Out-of-plane Loading[J]. Engineering Structures, 2020, 204: 110076.
[8] 何波, 孙长青, 陈威. 铝热焊的温度场及残余应力场有限元分析[J]. 焊接技术, 2010, 39(1): 20-23, 1.
HE Bo, SUN Changqing, CHEN Wei. Finite Element Analysis of Welding Temperature and Residual Stress Field of Thermit Welding[J]. Welding Technology, 2010, 39(1): 20-23, 1.
[9] LIU Yang, TSANG K S, SUBRAMANIAM N A, et al. Structural Fatigue Investigation of THermite Welded Rail Joints Considering Weld-induced Residual Stress and Stress Relaxation by Cyclic Load[J]. Engineering Structures, 2021, 235: 112033.
[10] 谢瑜龙, 丁昊昊, 林强, 等. 轮轨滚动接触疲劳损伤机制与预测方法研究[J]. 高速铁路新材料, 2022, 1(1): 20-29.
XIE Yulong, DING Haohao, LIN Qiang, et al. Research Progress of Wheel-rail Rolling Contact Fatigue Damage Mechanism and Prediction Method[J]. Advanced Materials of High Speed Railway, 2022, 1(1): 20-29.
[11] 周宇, 王钲, 卢哲超, 等. 钢轨滚动接触疲劳裂纹萌生和磨耗共存预测方法验证[J]. 同济大学学报(自然科学版), 2021, 49(3): 411-420.
ZHOU Yu, WANG Zheng, LU Zhechao, et al. Verification of Prediction Method for Coexistence of Rolling Contact Fatigue Crack Initiation and Wear Growth in Rail[J]. Journal of Tongji University(Natural Science), 2021, 49(3): 411-420.
[12] SAKALO V, SAKALO A, TOMASHEVSKIY S, et al. Computer Modelling of Process of Accumulation of Rolling Contact Fatigue Damage in Railway Wheels[J]. International Journal of Fatigue, 2018, 111: 7-15.
[13] CHABOCHE J L. A Review of some Plasticity and Viscoplasticity Constitutive Theories[J]. International Journal of Plasticity, 2008, 24(10): 1642-1693.
[14] 杜全斌, 张肇伟. 铝热焊接技术的开发与应用[J]. 农机使用与维修, 2019(9): 24-27.
DU Quanbin, ZHANG Zhaowei. Development and Application of Aluminum Heat Welding[J]. Agricultural Mechanization Using & Maintenance, 2019(9): 24-27.
[15] 田国鹏, 张银龙. 54E1钢轨铝热焊工艺及质量控制[J]. 工程建设与设计, 2019(3): 196-198.
TIAN Guopeng, ZHANG Yinlong. Alumino-thermic Welding Process and Quality Control of 54E1 Rail[J]. Construction & Design for Engineering, 2019(3): 196-198.
[16] 陈雨, 王攀杰, 孙耀亮, 等. 考虑曲面接触斑的轮轨滚动接触行为分析[J]. 铁道学报, 2021, 43(5): 27-36.
CHEN Yu, WANG Panjie, SUN Yaoliang, et al. Analysis of Wheel-rail Rolling Contact Behavior Considering Curved Contact Patch[J]. Journal of the China Railway Society, 2021, 43(5): 27-36.
[17] 王平, 周佳仪, 王攀杰, 等. 三种非赫兹滚动接触模型的对比研究[J]. 铁道学报, 2022, 44(1): 39-47.
WANG Ping, ZHOU Jiayi, WANG Panjie, et al. Comparative Study of Three Non-Hertzian Rolling Contact Models[J]. Journal of the China Railway Society, 2022, 44(1): 39-47.
[18] MEYER K A, SKRYPNYK R, PLETZ M. Efficient 3d Finite Element Modeling of Cyclic Elasto-plastic Rolling Contact[J]. Tribology International, 2021, 161: 107053.
[19] 姚力, 朱胜阳, 韦强文, 等. 400 km/h高速铁路无砟轨道列车竖向设计荷载动力学研究[J]. 高速铁路技术, 2021, 12(2): 73-78.
YAO Li, ZHU Shengyang, WEI Qiangwen, et al. Study on Dynamics of Vertical Design Load for Trains on Ballastless Track of 400 km/h High-speed Railway[J]. High Speed Railway Technology, 2021, 12(2): 73-78.
[20] 陈浩. 基于动力学分析的高速铁路钢轨磨耗预测方法研究[J].高速铁路技术, 2022, 13(6):17-22.
CHEN Hao. Study on Prediction Method of Rail Wear of High-speed Railway Based on Dynamic Analysis [J]. High Speed Railway Technology, 2022, 13(6):17-22.
[21] 王立飞, 刘志明, 金新灿. 高速车轮载荷谱的试验研究[J]. 铁道车辆, 2016, 54(2): 4-7, 1.
WANG Lifei, LIU Zhiming, JIN Xincan. Test and Research on Load Spectrum for High Speed Wheels[J]. Rolling Stock, 2016, 54(2): 4-7, 1.
[22] LI Fukai, HU Weiping, MENG Qingchun, et al. A New Damage-Mechanics-Based Model for Rolling Contact Fatigue Analysis Ofcylindrical Roller Bearing[J]. Tribology International, 2018, 120: 105-114.

备注/Memo

备注/Memo:
收稿日期:2023-02-06
作者简介:张玉华(1977-),男,研究员。
更新日期/Last Update: 2024-10-30