参考文献/References:
[1] 余超, 雷雳. 铁路移动终端安全管控方案探讨[J]. 高速铁路技术, 2022, 13(5): 10-13, 30.
YU Chao, LEI Li. Discussion on Safety Control Solution of Railway Mobile Terminals[J]. High Speed Railway Technology, 2022, 13(5): 10-13, 30.
[2] 赖英旭, 刘增辉, 蔡晓田, 等. 工业控制系统入侵检测研究综述[J]. 通信学报, 2017, 38(2): 143-156.
LAI Yingxu, LIU Zenghui, CAI Xiaotian, et al. Research on Intrusion Detection of Industrial Control System[J]. Journal on Communications, 2017, 38(2): 143-156.
[3] 张蕾, 崔勇, 刘静, 等. 机器学习在网络空间安全研究中的应用[J]. 计算机学报, 2018, 41(9): 1943-1975.
ZHANG Lei, CUI Yong, LIU Jing, et al. Application of Machine Learning in Cyberspace Security Research[J]. Chinese Journal of Computers, 2018, 41(9): 1943-1975.
[4] 张玉清, 董颖, 柳彩云, 等. 深度学习应用于网络空间安全的现状、趋势与展望[J]. 计算机研究与发展, 2018, 55(6): 1117-1142.
ZHANG Yuqing, DONG Ying, LIU Caiyun, et al. Situation, Trends and Prospects of Deep Learning Applied to Cyberspace Security[J]. Journal of Computer Research and Development, 2018, 55(6): 1117-1142.
[5] 杨印根, 王忠洋. 基于深度神经网络的入侵检测技术[J]. 网络安全技术与应用, 2019(4): 37-41.
YANG Yingen, WANG Zhongyang. Intrusion Detection Technology Based on Deep Neural Network[J]. Network Security Technology & Application, 2019(4): 37-41.
[6] 解滨, 李清扬, 董新玉. 面向网络入侵检测数据的对抗样本生成方法[J]. 山东大学学报(理学版), 2021, 56(3): 28-36.
XIE Bin, LI Qingyang, DONG Xinyu. Adversarial Examples Generation Method for Network Intrusion Detection Data[J]. Journal of Shandong University(Natural Science), 2021, 56(3): 28-36.
[7] 王晓程, 刘恩德, 谢小权. 攻击分类研究与分布式网络入侵检测系统[J]. 计算机研究与发展, 2001, 38(6): 727-734.
WANG Xiaocheng, LIU Ende, XIE Xiaoquan. Attack Classification Research and a Distributed Network Intrusion Detection System[J]. Journal of Computer Research and Development, 2001, 38(6): 727-734.
[8] 丁龙斌, 伍忠东, 苏佳丽. 基于集成深度森林的入侵检测方法[J]. 计算机工程, 2020, 46(3): 144-150.
DING Longbin, WU Zhongdong, SU Jiali. Intrusion Detection Method Based on Ensemble Deep Forests[J]. Computer Engineering, 2020, 46(3): 144-150.
[9] 李勇, 张波. 一种基于深度CNN的入侵检测算法[J]. 计算机应用与软件, 2020, 37(4): 324-328.
LI Yong, ZHANG Bo. An Intrusion Detection Algorithm Based on Deep Cnn[J]. Computer Applications and Software, 2020, 37(4): 324-328.
[10] 曹峰. 计算机联锁系统安全评估分析与研究[J]. 高速铁路技术, 2015, 6(4): 1-3.
CAO Feng. Analysis and Research on Safety Assessment of Computer Interlocking System[J]. High Speed Railway Technology, 2015, 6(4): 1-3.
[11] 张玲, 张建伟, 桑永宣, 等. 基于随机森林与人工免疫的入侵检测算法[J]. 计算机工程, 2020, 46(8): 146-152.
ZHANG Ling, ZHANG Jianwei, SANG Yongxuan, et al. Intrusion Detection Algorithm Based on Random Forest and Artificial Immunity[J]. Computer Engineering, 2020, 46(8): 146-152.
[12] KDD Cup 1999 Data. Irvine, CA(USA), Information and Computer Science University of California, Irivine[EB/OL]. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, 2005-6-8.
[13] 张全龙. 基于深度学习模型的网络入侵检测研究[D]. 天津: 天津理工大学, 2021.
ZHANG Quanlong. Research on Network Intrusion Detection Based on Deep Learning Model[D].Tianjin: Tianjin University of Technology, 2021.
[14] WANG Wei, HE Yongzhong, LIU Jiqiang, et al. Constructing Important Features from Massive Network Traffic for Lightweight Intrusion Detection[J]. IET Information Security, 2015, 9(6): 374-379.