[1]杨 飞.基于改进灰色预测模型的铁路客运量预测研究[J].高速铁路技术,2024,15(05):83-86,112.[doi:10.12098/j.issn.1674-8247.2024.05.014]
 YANG Fei.Study on Railway Passenger Volume Forecast Based on an Improved Grey Forecasting Model[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(05):83-86,112.[doi:10.12098/j.issn.1674-8247.2024.05.014]
点击复制

基于改进灰色预测模型的铁路客运量预测研究()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
15卷
期数:
2024年05期
页码:
83-86,112
栏目:
研究创新
出版日期:
2024-10-30

文章信息/Info

Title:
Study on Railway Passenger Volume Forecast Based on an Improved Grey Forecasting Model
文章编号:
1674-8247(2024)05-0083-04
作者:
杨 飞
(中铁工程设计咨询集团有限公司, 北京 100055)
Author(s):
YANG Fei
(China Railway Engineering Design Consulting Group Co., Ltd., Beijing 100055, China)
关键词:
灰色模型 背景值改进 函数拟合 铁路客运量 预测
Keywords:
grey model background value improvement function fitting railway passenger volume forecast
分类号:
U293.1
DOI:
10.12098/j.issn.1674-8247.2024.05.014
文献标志码:
A
摘要:
为提高灰色预测模型在铁路客运量预测的精度,提出对样本数据的累加生成序列进行函数拟合,再通过求其函数定积分的方法来改进灰色预测模型背景值,并以上海市铁路客运量预测为研究对象,验证灰色预测模型的改进效果。研究结果表明,通过对累加生成序列进行函数求拟合,并求其定积分计算背景值的灰色预测模型具有更好的预测精度,相比于传统方法和指数函数积分法,改进方法得到背景值的平均相对预测误差减少0.097%、0.183%。
Abstract:
To enhance the accuracy of grey forecasting models in forecasting railway passenger volume, this study proposed fitting the accumulated generating sequence of sample data with a function, followed by determining its definite integral to improve the background value within the grey forecasting model. With Shanghai's railway passenger volume serving as the subject of investigation, the efficacy of the enhanced grey forecasting model was verified. The results indicate that a grey forecasting model incorporating functional fitting of the accumulated generating sequence and the calculation of background values through definite integration exhibits superior forecast precision. Compared to conventional methods and the exponential integral approach, the proposed improvement yields average relative forecasting errors for background values reduced by 0.097% and 0.183% respectively.

参考文献/References:

[1] 都晓艺. 基于初始值与背景值双重优化的GM(1, N)幂模型构建研究[D]. 无锡: 江南大学, 2022.
DU Xiaoyi. Research on Construction of a New GM(1, N)Power Model Based on Double Optimization of Initial Value and Background Value[D].Wuxi: Jiangnan University, 2022.
[2] 黎湛明. 基于背景值优化改进的灰色沉降预测模型研究[J]. 测绘与空间地理信息, 2022, 45(12): 243-244, 249.
LI Zhanming. Research on Grey Subsidence Prediction Model Based on Optimization and Improvement of Background Value[J]. Geomatics & Spatial Information Technology, 2022, 45(12): 243-244, 249.
[3] 缪燕子, 王志铭, 李守军, 等. 基于背景值和结构相容性改进的多维灰色预测模型[J]. 自动化学报, 2022, 48(4): 1079-1090.
MIAO Yanzi, WANG Zhiming, LI Shoujun, et al. Improved Multi-Dimensional Grey Prediction Model Based on Background Value and Structural Compatibility[J]. Acta Automatica Sinica, 2022, 48(4): 1079-1090.
[4] 张丽洁, 沙秀艳, 尹传存, 等. 基于变权优化背景值改进的GM(1, 1)灰色预测模型及其应用[J]. 计算机与现代化, 2021(1): 1-6, 27.
ZHANG Lijie, SHA Xiuyan, YIN Chuancun, et al. Improved GM(1, 1)Grey Prediction Model Based on Background Value of Variable Weight Optimization and Its Application[J]. Computer and Modernization, 2021(1): 1-6, 27.
[5] 杨建文, 杨德宏, 罗文生. 基于非齐次指数函数的灰色预测模型背景值重构方法研究[J]. 工程勘察, 2014, 42(7): 64-68.
YANG Jianwen, YANG Dehong, LUO Wensheng. Study on the Reconstructed Method of Background Value in Gray Predictive Model Based on Non-homogeneous Exponential Function[J]. Geotechnical Investigation & Surveying, 2014, 42(7): 64-68.
[6] 姜永杰, 张书豪, 吴光, 等. 基于灰色系统及BP神经网络算法的边坡变形预测精确度影响分析[J]. 高速铁路技术, 2020, 11( 5): 13-19.
JIANG Yongjie, ZHANG Shuhao, WU Guang, et al. Influence Analysis of Slope Deformation Prediction Accuracy Based on Grey System and BP Neural Network Algorithm[J]. High Speed Railway Technology, 2020, 11(5): 13-19.
[7] 周清, 王奉伟. 灰色预测模型背景值改进方法比较分析[J]. 东华理工大学学报(自然科学版), 2015, 38(2): 231-234.
ZHOU Qing, WANG Fengwei. Comparison and Analysis of Background Value Optimization for Grey Pdiction Model[J]. Journal of East China Institute of Technology(Natural Science), 2015, 38(2): 231-234.
[8] 严雪晴. 基于灰色模型的广州港吞吐量预测[J]. 天津航海, 2023(1): 28-30.
YAN Xueqing. The Throughput Forecasting of Guangzhou Port Based on Grey Model[J]. Tianjin of Navigation, 2023(1): 28-30.
[9] 邢笑琦, 刘海峰. 基于灰色预测模型对J省大病保险基金的现状分析[J]. 内蒙古科技与经济, 2022(22): 57-60.
XING Xiaoqi, LIU Haifeng. Analysis on the Current Situation of Serious Illness Insurance Fund in J Province Based on Grey Prediction Model[J]. Inner Mongolia Science Technology & Economy, 2022(22): 57-60.
[10] 徐庆儒. 基于灰色预测模型的农村居民人均可支配收入预测研究[J]. 农业与技术, 2022, 42(18): 171-174.
XU Qingru. Study on the Prediction of Rural Residents' Per Capita Disposable Income Based on Grey Prediction Model[J]. Agriculture and Technology, 2022, 42(18): 171-174.
[11] 柴乃杰, 周文梁. 基于无偏灰色组合动态模型的铁路客运量预测研究[J]. 铁道标准设计, 2023, 67(2): 10-15.
CHAI Naijie, ZHOU Wenliang. Research on Forecasting Railway Passenger Flow Based on Unbiased-gray Combined and Dynamic Model[J]. Railway Standard Design, 2023, 67(2): 10-15.
[12] 潘丽, 李林. 基于灰色马尔科夫模型的上海铁路客运量预测[J]. 物流科技, 2019, 42(3): 99-102.
PAN Li, LI Lin. Passenger Traffic Forecast of Shanghai Railway Based on Grey Markov Model[J]. Logistics Sci-Tech, 2019, 42(3): 99-102.

备注/Memo

备注/Memo:
收稿日期:2023-04-01
作者简介:杨飞(1995-),男,工程师。
更新日期/Last Update: 2024-10-30