[1]陈 力,焦康杰.超浅埋隧道下穿运营铁路新工法研究及应用[J].高速铁路技术,2024,15(05):113-118,124.[doi:10.12098/j.issn.1674-8247.2024.05.019]
 CHEN Li,JIAO Kangjie.Study on Novel Methodology for Ultra-shallow Tunnel Construction underneath Operational Railways and Application[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(05):113-118,124.[doi:10.12098/j.issn.1674-8247.2024.05.019]
点击复制

超浅埋隧道下穿运营铁路新工法研究及应用()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
15卷
期数:
2024年05期
页码:
113-118,124
栏目:
施工技术
出版日期:
2024-10-30

文章信息/Info

Title:
Study on Novel Methodology for Ultra-shallow Tunnel Construction underneath Operational Railways and Application
文章编号:
1674-8247(2024)05-0113-06
作者:
陈 力1焦康杰2
(1.上海市城市建设设计研究总院(集团)有限公司, 上海 200125; (2.中铁二院贵阳勘察设计研究院有限公司, 贵阳 550002)
Author(s):
CHEN Li1JIAO Kangjie2
(1. Shanghai Urban Construction Design & Research Institute(Group)Co., Ltd., Shanghai 200125, China; 2. Guiyang Survey and Design Co., Ltd. of CREEC, Guiyang 550002, China)
关键词:
浅埋隧道 下穿铁路 新工法 数值分析 工程应用
Keywords:
shallow tunnel crossing beneath railways novel construction method numerical analysis practical application
分类号:
U455
DOI:
10.12098/j.issn.1674-8247.2024.05.019
文献标志码:
A
摘要:
随着我国铁路的快速发展,新建浅埋暗挖隧道下穿既有运营铁路常有涉及,新建隧道施工严重威胁铁路运营安全,保障隧道施工安全与既有线运营安全是亟待解决的问题。本文以西南地区某铁路隧道下穿运营铁路工程为背景,提出“短循环,三次衬砌截桩”新工法,通过衬砌结构验算、三维数值模拟及工程应用进行研究。结果表明:(1)在超浅埋隧道小角度下穿运营铁路工程中,该工法使得D型便梁可自由组合,摆脱了D型便梁长度受限的束缚;(2)三次衬砌不仅提高了永久支护结构的安全系数,而且解决了隧道防水问题; 二次、三次衬砌的最小安全系数均位于拱顶,分别为5.8和14.9,均满足规范要求;(3)隧道从两端向中间掘进,初期支护拱顶沉降曲线呈现出中间小两端大的“Λ”形态,最后贯通的8 m围拱顶沉降最小;(4)待二次衬砌达到设计强度100%后再进行人工截桩施工,可以减小因桩体支撑点的改变所引起的隧道拱部沉降量;(5)该工法通过短开挖及时支护控制隧道应力释放,进而减小地层损失所引起的地表沉降对运营铁路的轨道变形影响。经过5年跟踪调查,该工程未发现衬砌裂缝及渗漏水等病害,充分验证了该工法的安全可行性。
Abstract:
Amidst the rapid expansion of China's railway network, the construction of new shallow tunnels that cross beneath existing operational railway lines is increasingly common, posing significant threats to the safety of both tunnel construction and railway operations. Based on the construction of a railway tunnel, this study introduced a novel “short cycle, three-stage lining with pile cutting” approach. Through the examination of lining structure calculations, three-dimensional numerical simulations, and practical applications, the following conclusions are drawn:(1)In ultra-shallow tunneling projects involving small-angle crossings beneath operational railways, this methodology enables flexible assembly of D-type temporary supports, overcoming limitations imposed by fixed D-type beam lengths.(2)The three-stage lining not only enhances the safety factor of the permanent support structure but also addresses waterproofing concerns. The minimum safety factors for the secondary and tertiary linings, respectively located in the arch crown, are found to be 5.8 and 14.9, both meeting regulatory requirements.(3)Excavation progresses from both ends towards the middle, resulting in a “Λ” shaped profile of initial lining vault settlement, with the smallest settlements occurring in the final 8 m stretch before breakthrough.(4)Undertaking pile cutting after the secondary lining reaches 100% design strength mitigates tunnel vault settlement caused by changes in pile support points.(5)The method effectively manages stress release through short excavation cycles and prompt support installation, thereby minimizing ground settlement-induced railway track deformation due to ground loss. A five-year follow-up investigation reveals no instances of lining cracks or water ingress, substantiating the safety and feasibility of the proposed methodology.

参考文献/References:

[1] 巩江峰, 王伟, 王芳, 等. 截至2023年底中国铁路隧道情况统计及2023年新开通重点项目隧道情况介绍[J]. 隧道建设(中英文), 2024, 44(2): 377-392.
GONG Jiangfeng, WANG Wei, WANG Fang, et al. Statistics of China's Railway Tunnels by the End of 2023 and Overview of Tunnels of Key New Projects in 2023[J]. Tunnel Construction, 2024, 44(2): 377-392.
[2] 《中国公路学报》编辑部. 中国交通隧道工程学术研究综述·2022[J]. 中国公路学报, 2022, 35(4): 1-40.
Editorial Department of China Journal of Highway and Transport. Review on China's Traffic Tunnel Engineering Research: 2022[J]. China Journal of Highway and Transport, 2022, 35(4): 1-40.
[3] 朱正国, 陈信宇, 陈自飞, 等. 盾构隧道下穿既有车站变形控制研究[J]. 高速铁路技术, 2019, 10(4): 6-11.
ZHU Zhengguo, CHEN Xinyu, CHEN Zifei, et al. Research on Deformation Control of Shield Tunneling under Subway Station[J]. High Speed Railway Technology, 2019, 10(4): 6-11.
[4] LEI Mingfeng, LIN Dayong, HUANG Qiyou, et al. Research on the Construction Risk Control Technology of Shield Tunnel underneath an Operational Railway in Sand Pebble Formation: a Case Study[J]. European Journal of Environmental and Civil Engineering, 2020, 24(10): 1558-1572.
[5] 刘建友, 赵勇, 吕刚, 等. 隧道下穿高速铁路路基风险分级及风险评价方法研究[J]. 现代隧道技术, 2020, 57(6): 8-16, 54.
LIU Jianyou, ZHAO Yong, LV Gang, et al. Research on Risk Classification and Assessment Method for Tunnels Crossing under High-speed Railway Subgrade[J]. Modern Tunnelling Technology, 2020, 57(6): 8-16, 54.
[6] 杨庆刚, 孙明, 倪小东, 等. 超浅埋隧道下穿铁路引起变形敏感度数值分析[J]. 现代隧道技术, 2017, 54(3): 112-119.
YANG Qinggang, SUN Ming, NI Xiaodong, et al. Numerical Analysis of the Sensitivity of Deformation Caused by a Super Shallow-buried Tunnel Passing under an Existing Railway[J]. Modern Tunnelling Technology, 2017, 54(3): 112-119.
[7] LUO Congshuang, CHENG Yihong, BAI Zhe, et al. Study on Deformation Law of Subway Construction under Passing Existing Line in Short Distance[J]. Advances in Civil Engineering, 2021, 2021: 6626927.
[8] 赵太东. 泥岩地层盾构隧道下穿既有成昆铁路无预加固施工安全分析[J]. 现代隧道技术, 2020, 57(3): 122-127.
ZHAO Taidong. Analysis on Construction Safety of a Shield Tunnel beneath Existing Chengdu-Kunming Railway without Pre-Reinforcement in Argillite[J]. Modern Tunnelling Technology, 2020, 57(3): 122-127.
[9] SONG Qiyu. Study on Control Measures of the Influence of Shallow Buried Tunnel Excavation on the Subgrade Settlement of High Speed Railway in Operation[J]. Vibroengineering PROCEDIA, 2021, 36: 37-42.
[10] 付琪生. 电力隧道下穿铁路沉降控制技术研究[J]. 铁道建筑技术, 2021(4): 32-36.
FU Qisheng. Research on Settlement Control Technology of Power Tunnel Underpassing Railway[J]. Railway Construction Technology, 2021(4): 32-36.
[11] 刘胜欢, 杜明芳, 易领兵, 等. 北京新机场线大断面暗挖隧道下穿京沪铁路施工影响数值分析[J]. 城市轨道交通研究, 2020, 23(8): 125-129.
LIU Shenghuan, DU Mingfang, YI Lingbing, et al. Numerical Analysis of the Large Section Tunnel Excavation for Beijing New Airport Line Crossing under Beijing-Shanghai Railway[J]. Urban Mass Transit, 2020, 23(8): 125-129.
[12] 任高峰, 杨旭春, 张聪瑞, 等. 新管幕法下穿铁路既有线施工地表沉降监测[J]. 安全与环境学报, 2021, 21(1): 163-171.
REN Gaofeng, YANG Xuchun, ZHANG Congrui, et al. On the Ground Subsidence Monitoring in the Construction of the Currently Existing Rail-lines under the New Tube Curtain Method[J]. Journal of Safety and Environment, 2021, 21(1): 163-171.
[13] LI Xiaoxue, TAN Zhongsheng, WANG Xiuying, et al. Comparative Study on the Influence of Different Forms of New Tubular Roof Method Construction on Railway Tracks[J]. Symmetry, 2022, 14(7): 1361.
[14] YANG Songsong, ZHANG Dingwen, WANG Mei, et al. Ground and Tunnel Deformation Induced by Excavation in Pipe-roof Pre-construction Tunnel: a Case Study[J]. Tunnelling and Underground Space Technology, 2023, 131: 104832.
[15] 丁维利, 赵永明, 初厚永, 等. 浅埋大断面黄土隧道下穿既有铁路施工技术[J]. 现代隧道技术, 2008, 45(6): 76-81.
DING Weili, ZHAO Yongming, CHU Houyong, et al. Technology for a Shallow Large Profile Loess Tunnel to Underpass Existing Railway[J]. Modern Tunnelling Technology, 2008, 45(6): 76-81.
[16] 秦虎, 马亢, 贾剑青. 隧道下穿对上覆铁路线的影响及风险管控研究[J]. 地下空间与工程学报, 2019, 15(S2): 871-877.
QIN Hu, MA Kang, JIA Jianqing. Study on the Influence of Tunnel Underpass on Overlying Railway Line and Its Risk Management and Control[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(S2): 871-877.
[17] 张军, 麻建飞, 刘夏冰, 等. 浅埋超大跨隧道洞口段围岩稳定性研究[J]. 高速铁路技术, 2023, 14(6): 7-12,18.
ZHANG Jun, MA Jianfei, LIU Xiabing, et al.A Study on Rock Stability in Portal Section of Shallow Extra-large-span Tunnel[J]. High Speed Railway Technology, 2023, 14(6):7-12,18.
[18] TB 10003-2016铁路隧道设计规范 [S].
TB 10003-2016 Code for Design of Railway Tunnel[S].

备注/Memo

备注/Memo:
收稿日期:2023-02-13
作者简介:陈力(1987-),男,工程师。
更新日期/Last Update: 2024-10-30