[1]黎蔚诗,申允,杨可,等.考虑支座温度的隔震结构地震响应分析[J].高速铁路技术,2024,15(06):84-90.[doi:10.12098/j.issn.1674-8247.2024.06.014]
 LI Weishi SHEN Yun YANG Ke SHI Chuanqing.Seismic Response Analysis of Base-isolated Structures Considering Bearing Temperature[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(06):84-90.[doi:10.12098/j.issn.1674-8247.2024.06.014]
点击复制

考虑支座温度的隔震结构地震响应分析()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
15卷
期数:
2024年06期
页码:
84-90
栏目:
研究创新
出版日期:
2024-12-15

文章信息/Info

Title:
Seismic Response Analysis of Base-isolated Structures Considering Bearing Temperature
文章编号:
1674-8247(2024)06-0084-07
作者:
黎蔚诗申允杨可石川清
(中铁二院工程集团有限责任公司, 成都 610031)
Author(s):
LI Weishi SHEN Yun YANG Ke SHI Chuanqing
(China Railway Eryuan Engineering Group Co., Ltd., Chengdu 610031, China)
关键词:
橡胶隔震支座 压剪试验 温度相关性 隔震结构 地震响应
Keywords:
rubber isolation bearing compression shear test temperature dependency base-isolated structures seismic response
分类号:
TU352.12
DOI:
10.12098/j.issn.1674-8247.2024.06.014
文献标志码:
A
摘要:
为评估采用橡胶支座的隔震结构在不同温度下的抗震性能,采用力学性能试验分析橡胶支座力学参数随温度变化规律,建立隔震结构的有限元模型分析支座温度相关性对其抗震性能的影响。结果表明:(1)温度从20 ℃降低到-25 ℃,LRB500滞回曲线峰值荷载显著增大; 屈服后刚度、等效刚度、屈服荷载和等效阻尼比分别增大21.1%、32%、42.7%和11.1%; LNR500的滞回曲线变化幅度较小,等效刚度增大19.0%;(2)环境温度变低导致隔震层的总刚度和总屈服荷载变大,导致隔震体系的减震效率降低,上部结构的底部剪力、最大层间位移角和结构顶部加速度均较大幅度增加;(3)低温条件下,隔震支座的最大剪力、最大位移、轴向最大面压和最小面压均产生较大幅度变化,甚至会进入极限状态,危及隔震体系的安全性;(4)环境温度对橡胶支座力学性能以及隔震结构抗震性能的影响非常显著,隔震结构设计时必须通过试验或有限元法,结合场地气象条件进行温度效应分析。
Abstract:
To evaluate the seismic performance of base-isolated structures with rubber bearings at different temperatures, mechanical property tests were conducted to analyze the variation of mechanical parameters of rubber bearings with temperature. Finite element models of the base-isolated structures were established to analyze the influence of temperature-dependency of bearings on their seismic performance. The results indicate that:(1)As the temperature decreases from 20°C to -25°C, the peak load of the hysteresis curve of LRB500 significantly increases; the post-yield stiffness, equivalent stiffness, yield load, and equivalent damping ratio increase by 21.1%, 32%, 42.7%, and 11.1%, respectively. For LNR500, the hysteresis curve changes less significantly, with an increase in equivalent stiffness by 19.0%.(2)Lower ambient temperatures lead to an increase in the total stiffness and total yield load of the isolation layer, resulting in a reduction in the damping efficiency of the base-isolated system. The base shear force, maximum interlayer displacement angle, and acceleration at the top of the superstructure all increase significantly.(3)Under low-temperature conditions, the maximum shear force, maximum displacement, maximum axial surface compression, and minimum surface compression of the isolation bearing undergo significant changes and may even reach limit states, jeopardizing the safety of the base-isolated system.(4)The influence of ambient temperature on the mechanical properties of rubber bearings and the seismic performance of base-isolated structures is very significant. Therefore, temperature effect analysis must be conducted during the design of base-isolated structures through experiments or finite element methods, combined with site meteorological conditions.

参考文献/References:

[1] 李晓波. 减隔震支座及黏滞阻尼器减震效果分析研究[J]. 高速铁路技术, 2021, 12(4): 34-38.
LI Xiaobo. Analysis of the Damping Effect of Seismic Mitigation and Isolation Bearings and Fluid Viscous Dampers[J]. High Speed Railway Technology, 2021, 12(4): 34-38.
[2] Nagarajaiah S, Reinhorn A M, Constantinou M C.Nonlinear Dynamic Analysis of 3D-Base-Isolated Structures[J].Journal of Structural Engineering, 1991, 117(7):2035-2054.
[3] Koh C G, Kelly J M. A Simple Mechanical Model for Elastomeric Bearings Used in Base Isolation[J]. International Journal of Mechanical Sciences, 1988, 30( 12): 933-943.
[4] Pinarbasi, S, Akyuz, U, Ozdemir, G. An Experimental Study on Low Temperature Behavior of Elastomeric Bridge Bearings.[C]//10th World Conference On Seismic Isolation Energy Dissipation and Active Vibrations Control Of Structures. Turkey: 2007.
[5] 沈朝勇, 周福霖, 崔杰, 等. 高阻尼隔震橡胶支座的相关性试验研究及其参数取值分析[J]. 地震工程与工程振动, 2012,32(6): 95-103.
SHEN Chaoyong, ZHOU Fulin, CUI Jie, et al. Dependency Test Research of Mechanical Performance of HDR and Its Parametric Value Analysis[J]. Earthquake Engineering and Engineering Dynamics, 2012, 32(6): 95-103.
[6] A RJZ, B AQLA. Experimental Study on Temperature Dependence of Mechanical Properties of Scaled High-performance Rubber Bearings-ScienceDirect[J].Composites Part B: Engineering, 2020, 190:107932.
[7] Kalpakidis IV, Constantinou MC. Effects of Heating on the Behavior of Lead-rubber Bearings. I: Theory[J]. Journal of Structural Engineering, 2009, 135(12): 1440-1449.
[8] Kalpakidis IV, Constantinou M C. Effects of Heating on the Behavior of Lead-rubber Bearings.II: Verification of Theory[J]. Journal of Structural Engineering, 2009, 135(12): 1450-1461.
[9] 刘文光, 杨巧荣, 周福霖. 建筑用铅芯橡胶隔震支座温度性能研究[J]. 世界地震工程, 2003, 19(2): 39-44.
LIU Wenguang, YANG Qiaorong, ZHOU Fulin. Temperature Properties of Lead Rubber Bearings for Building[J]. World Earthquake Engineering, 2003, 19(2): 39-44.
[10] 李黎, 叶昆, 江宜城. 橡胶铅芯隔震支座力学性能的温度效应研究[J]. 华中科技大学学报(城市科学版), 2009, 26(3): 1-3.
LI Li, YE Kun, JIANG Yicheng. Thermal Effect on the Mechanical Behavior of Lead-rubber Bearing[J]. Journal of Civil Engineering and Management, 2009, 26(3): 1-3.
[11] Ozdemir G, Avsar O, Bayhan B. Change in Response of Bridges Isolated with LRBs due to Lead Core Heating[J]. Soil Dynamics & Earthquake Engineering, 2011, 31(7): 921-929.
[12] Bruce, R, Ellingwood, et al. Fragility Assessment of Building Structural Systems in Mid-America[J]. Earthquake Engineering & Structural Dynamics, 2007, 36(13): 1935-1952.
[13] 罗登发, 郭占元, 戴胜勇, 等. 双曲面球型减隔震支座在铁路桥梁上的应用[J].高速铁路技术, 2018, 9(1): 53-55,89.
LUO Dengfa, GUO Zhanyuan, DAI Shengyong, et al. Application of Hyperboloid Spherical Isolation Bearing on Railway Bridge[J]. High Speed Railway Technology, 2018, 9(1): 53-55, 89.
[14] GB 50011- 2010 建筑抗震设计标准 [S].
GB 50011- 2010 Code for Seismic Design of Buildings [S].
[15] ATC-63 Quantification of Building Seismic Performance Factors[S].

备注/Memo

备注/Memo:
收稿日期:2024-03-27
作者简介:黎蔚诗(1992-), 女, 工程师。
更新日期/Last Update: 2024-12-15