[1]刘伟,常兴旺,周航,等.西部山区某深埋长大隧道地应力特征及大变形危险性分析[J].高速铁路技术,2024,15(06):98-103.[doi:10.12098/j.issn.1674-8247.2024.06.016]
 LIU Wei CHANG Xingwang ZHOU Hang ZHANG Yuqi YIN Xiaokang SONG Zhang.Analysis of In-situ Stress Characteristics and Large Deformation Risk for a Deep and Long Tunnel in the Western Mountainous Area[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(06):98-103.[doi:10.12098/j.issn.1674-8247.2024.06.016]
点击复制

西部山区某深埋长大隧道地应力特征及大变形危险性分析()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
15卷
期数:
2024年06期
页码:
98-103
栏目:
勘察设计
出版日期:
2024-12-15

文章信息/Info

Title:
Analysis of In-situ Stress Characteristics and Large Deformation Risk for a Deep and Long Tunnel in the Western Mountainous Area
文章编号:
1674-8247(2024)06-0098-06
作者:
刘伟1常兴旺2周航2张宇琦1尹小康2宋章2
(1.西南交通大学, 成都 611756; 2.中铁二院工程集团有限责任公司, 成都 610031)
Author(s):
LIU Wei1 CHANG Xingwang2 ZHOU Hang2 ZHANG Yuqi1 YIN Xiaokang2 SONG Zhang2
(1.Southwest Jiaotong University,Chengdu 611756,China; 2.China Railway Eryuan Engineering Group Co., Ltd.,Chengdu 610031,China)
关键词:
深埋长大隧道 西部山区 水压致裂法 地应力特征 大变形
Keywords:
Key words:deep-lying long tunnels western mountainous areas hydraulic fracturing method in-situ stress characteristics large deformation
分类号:
U458
DOI:
10.12098/j.issn.1674-8247.2024.06.016
文献标志码:
A
摘要:
某隧道位于青藏高原东南缘,区域地质构造作用强烈,加之深切河谷地形地貌的影响,隧道建设中面临的高地应力问题异常复杂。通过在工程区布设8个钻孔,采用水压致裂法获取了62段地应力数据与25段定向印模测试数据,结合区域地质资料、室内试验和初始地应力场反演分析等,研究分析隧道工程区地应力特征。研究结果表明:(1)现场地应力测试结果显示,工程区整体上以水平构造应力为主,最大水平主应力优势方向为NE~NEE向,与区域地应力背景值基本吻合;(2)初始地应力场反演分析结果表明,隧道轴线最大水平主应力SH为7.7 ~ 26.28 MPa,最小水平主应力Sh为4.1 ~ 18.6 MPa,垂向主应力Sv为5.2~29.3 MPa,工程区应力场类型主要为走滑型断层(SH>Sv>Sh),局部区段为正断层(Sv>SH>Sh),隧道沿线93.84%的区域处于高到极高地应力状态,具备发生大变形的高地应力条件;(3)基于铁路隧道大变形双指标分级标准,隧道全长20 247 m,发生软岩大变形段落总长7 230 m,占比35.71%; 其中轻微大变形5 960 m,占比29.4%; 中等大变形1 010 m,占比4.99%; 强烈大变形260 m,占比1.28%。本文研究内容和结论可为类似地质条件下的西部山区长大深埋隧道前期勘察设计提供科学依据和技术支持。
Abstract:
A tunnel located in the southeastern margin of the Qinghai-Tibet Plateau faces exceptionally complex high in-situ stress issues during its construction due to intense regional geological tectonic activity combined with the influence of deep-cut valley landforms. By deploying eight boreholes in the engineering area and employing the hydraulic fracturing method, 62 segments of in-situ stress data and 25 segments of oriented impression test data were obtained. These data, along with regional geological information, laboratory tests, and back-analysis of the initial in-situ stress field, were used to investigate and analyze the characteristics of in-situ stress in the tunnel engineering area. The research results indicate:(1)Field in-situ stress tests reveal that the engineering area is dominated by horizontal tectonic stress overall, with the preferred orientation of the maximum horizontal principal stress being NE~NEE, which is basically consistent with the regional in-situ stress background values.(2)Back-analysis of the initial in-situ stress field shows that the maximum horizontal principal stress SH along the tunnel axis ranges from 7.7 MPa to 26.28 MPa, the minimum horizontal principal stress Sh from 4.1 MPa to 18.6 MPa,and the vertical principal stress Sv from 5.2 MPa to 29.3 MPa. The stress field type in the engineering area is mainly strike-slip faults(SH >Sv >Sh), with some local sections featuring normal faults(Sv >SH >Sh). 93.84% of the area along the tunnel is under high to extremely high in-situ stress conditions, possessing the conditions for high in-situ stress that can lead to large deformations.(3)Based on the double-index classification standard for large deformations in railway tunnels, the total length of the tunnel is 20 247 m, with a total length of 7 230 m experiencing soft rock large deformations, accounting for 35.71%. Among them, 5 960 m are subject to mild large deformations, accounting for 29.4%; 1 010 m are moderate large deformations, accounting for 4.99%; and 260 m are severe large deformations, accounting for 1.28%. The research conclusionscan provide scientific basis and technical support for the preliminary survey and design of deep and long tunnels in western mountainous areas under similar geological conditions.

参考文献/References:

[1] 马有良. 复杂地应力环境下隧道底鼓处治技术研究[J]. 高速铁路技术, 2024, 15(3): 68-72, 80.
MA Youliang. Study on Treatment Techniques for Tunnel Floor Heave in Complex Crustal Stress Environments[J]. High Speed Railway Technology, 2024, 15(3): 68-72, 80.
[2] 周航, 谢荣强, 宋章, 等. 高地应力蚀变花岗岩隧道大变形特征及成因分析[J]. 铁道技术标准(中英文), 2024(1): 29-35.
ZHOU Hang, XIE Rongqiang, SONG Zhang, et al. Large Deformation Characteristics and Genetic Analysis of High Geostress Altered Granite Tunnel[J]. Railway Technical Standard(Chinese & English), 2024(1): 29-35.
[3] 索朗, 徐正宣, 宋章, 等. 西南山区某深埋长大隧道水文地质特征及突涌水危险性分析[J]. 高速铁路技术, 2023, 14(3): 97-101.
SUO Lang, XU Zhengxuan, SONG Zhang, et al. Analysis of Hydrogeological Characteristics and Water Burst Risk of a Deep and Long Tunnel in Southwest Mountainous Area[J]. High Speed Railway Technology, 2023, 14(3): 97-101.
[4] 马栋, 孙毅, 王武现, 等. 高地应力软岩隧道大变形控制关键技术[J]. 隧道建设(中英文), 2021, 41(10): 1634-1643.
MA Dong, SUN Yi, WANG Wuxian, et al. Key Technologies for Controlling Large Deformation of Soft Rock Tunnels with High Geostress[J]. Tunnel Construction, 2021, 41(10): 1634-1643.
[5] 徐正宣, 孟文, 郭长宝, 等. 川西折多山某深埋隧道地应力测量及其应用研究[J]. 现代地质, 2021, 35(1): 114-125.
XU Zhengxuan, MENG Wen, GUO Changbao, et al. In-situ Stress Measurement and Its Application of a Deep-buried Tunnel in Zheduo Mountain, West Sichuan[J]. Geoscience, 2021, 35(1): 114-125.
[6] 周航, 张广泽, 赵晓彦, 等. 深部极高地应力花岗岩隧道岩爆破坏特征及成因机理研究[J]. 工程地质学报, 2024, 32(3):1098-1111.
ZHOU Hang, ZHANG Guangze, ZHAO Xiaoyan, et al. Rockburst Failure Characteristics and Formation Mecha-Nism of Deep Granite Tunnel with Extremely High Geo-stress[J]. Journal of Engineering Geology, 2024, 32(3): 1098-1111.
[7] 邹远华, 王朋, 周航, 等. 藏东南某隧道水文地质特征及突涌水危险性评价[J]. 高速铁路技术, 2022, 13(2): 37-42.
ZOU Yuanhua, WANG Peng, ZHOU Hang, et al. Hydrogeological Characteristics of a Tunnel in Southeastern Tibet and Risk Assessment of Water Burst[J]. High Speed Railway Technology, 2022, 13(2): 37-42.
[8] BROWN E T, HOEK E. Trends in Relationships between Measured In-situ Stresses and Depth[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(4): 211-215.
[9] 周航, 张广泽, 赵晓彦, 等. 西南山区某隧道地应力特征及岩爆危险性评价[J]. 铁道工程学报, 2023, 40(12): 48-54.
ZHOU Hang, ZHANG Guangze, ZHAO Xiaoyan, et al. In-situ Stress Characteristics and Rockburst Risk Evaluation of a Tunnel in the Southwest Mountains[J]. Journal of Railway Engineering Society, 2023, 40(12): 48-54.
[10] TB 10027-2022铁路工程不良地质勘察规程 [S].
TB 10027-2022 Specification for Unfavorable Geological Condition Investigation of Railway Engineering[S].
[11] 张广泽, 贾哲强, 冯君, 等. 铁路隧道双指标高地应力界定及岩爆大变形分级标准[J]. 铁道工程学报, 2022, 39(8): 53-58, 65.
ZHANG Guangze, JIA Zheqiang, FENG Jun, et al. Definition for Dual-index High Geostress and Classification Standard for Rock Burst and Large Deformation in Railway Tunnels[J]. Journal of Railway Engineering Society, 2022, 39(8): 53-58, 65.

相似文献/References:

[1]索朗,徐正宣,宋章,等.西南山区某深埋长大隧道水文地质特征及突涌水危险性分析[J].高速铁路技术,2023,14(03):97.[doi:10.12098/j.issn.1674-8247.2023.03.019]
 SUO Lang,XU Zhengxuan,SONG Zhang,et al.Analysis of Hydrogeological Characteristics and Water Burst Risk of a Deep and Long Tunnel in Southwest Mountainous Area[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(06):97.[doi:10.12098/j.issn.1674-8247.2023.03.019]
[2]刘观龙,任金龙,宋章.渝昆高速铁路彝良隧道高地温工程地质特性分析[J].高速铁路技术,2023,14(03):107.[doi:10.12098/j.issn.1674-8247.2023.03.021]
 LIU Guanlong,REN Jinlong,SONG Zhang.Analysis of Geological Characteristics of the High Geothermal Temperature of Yiliang Tunnel of Chongqing-Kunming High-speed Railway[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(06):107.[doi:10.12098/j.issn.1674-8247.2023.03.021]

备注/Memo

备注/Memo:
收稿日期:2024-09-09
作者简介:刘伟(1981-),男,高级工程师。
基金项目:中国中铁股份有限公司科技研究开发计划(No.2021- 重点- 02); 中铁二院工程集团有限责任公司科技研究开发计划课题(KDNQ214100)
更新日期/Last Update: 2024-12-15