[1]陈以庭,张辉彬,王宇浩,等.面向空铁联运的塔台车致振动影响及控制措施研究[J].高速铁路技术,2025,(01):21-28.[doi:10.12098/j.issn.1674-8247.2025.01.004]
 CHEN Yiting ZHANG Huibin WANG Yuhao YANG Jizhong FENG Dubei LIU Jian.of Towers in the Context of Air-rail Intermodal Transportation[J].HIGH SPEED RAILWAY TECHNOLOGY,2025,(01):21-28.[doi:10.12098/j.issn.1674-8247.2025.01.004]
点击复制

面向空铁联运的塔台车致振动影响及控制措施研究()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
期数:
2025年01期
页码:
21-28
栏目:
理论探索
出版日期:
2025-02-20

文章信息/Info

Title:
of Towers in the Context of Air-rail Intermodal Transportation
文章编号:
1674-8247(2025)01-0021-08
作者:
陈以庭1张辉彬2王宇浩2杨吉忠1冯读贝1刘键1
(1.中铁二院工程集团有限责任公司, 成都 610031; 2.广东省机场管理集团有限公司, 广州 510440)
Author(s):
CHEN Yiting1 ZHANG Huibin2 WANG Yuhao2 YANG Jizhong1 FENG Dubei1 LIU Jian1
(1.China Railway Eryuan Engineering Group Co., Ltd.,Chengdu 610031,China; 2.Guangdong Airport Authority,Guangzhou 510440,China)
关键词:
空铁联运 城际铁路 高速铁路 塔台 车致振动 控制措施
Keywords:
air-rail intermodal transportation intercity railway high-speed railway tower train-induced vibration control measures
分类号:
U238; TU311.3
DOI:
10.12098/j.issn.1674-8247.2025.01.004
文献标志码:
A
摘要:
为研究位于多线铁路隧道夹心地带塔台的车致振动响应,本文通过构建车-轨-隧-土-塔台三维动力学模型,分析了200 km/h城际铁路和350 km/h高速铁路运行对塔台的影响,针对塔台振动超标的现象,提出重型减振轨道、增加楼板厚度、拉开隧道结构之间的距离等控制措施。研究结果表明:(1)高速铁路运行引起的塔台振动响应大于城际铁路,当高速铁路与城际铁路在塔台附近交会时,塔台顶部功能区的Z振级均超标,塔台的车致振动影响频率集中在20~50 Hz范围内;(2)重型减振轨道的减振效率可达8.3%~12.1%,尤其对16~80 Hz范围内减振效果显著,但会轻微放大7 Hz设计频率处的振动;(3)将塔台楼板厚度增加至原来的2倍时,减振效率可达4.8%~7.3%,当楼板厚度增加至原来的2.25倍时,可满足振动限值要求;(4)随着两铁路隧道结构净距的增加,塔台Z振级衰减基本呈线性,每增加20 m,插入损失约2~3 dB,将隧道结构净距从40 m增加至80 m时,两铁路运行对塔台的振动影响可满足限值要求;(5)考虑到铁路开通后长时间运营可能会导致线路条件恶化,重型减振轨道结果离标准限值仍有2.4 dB余量,建议采用重型减振轨道降低塔台车致振动影响,研究成果可为相关工程提供经验指导。
Abstract:
To investigate the vibration response of a tower located in the sandwich zone of a multi-track railway tunnel induced by trains, this paper constructed a three-dimensional dynamic model of train-track-tunnel-soil-tower. The impacts of 200 km/h intercity railways and 350 km/h high-speed railways on the tower were analyzed. In response to excessive tower vibrations, control measures such as heavy vibration-reducing tracks, increased floor thickness, and increased spacing between tunnel structures were proposed. The research results indicate that the vibration response of the tower induced by high-speed railways is greater than that of intercity railways. When high-speed and intercity railways intersect near the tower, the Z-vibration levels in the functional areas at the top of the tower exceed the standard. The frequency range of tower vibrations induced by trains is concentrated between 20 Hz and 50 Hz. The vibration reduction efficiency of heavy vibration-reducing tracks can reach 8.3% to 12.1%, especially significant within the 16 Hz to 80 Hz range, but it slightly amplifies vibrations at the 7 Hz design frequency. When the thickness of the tower floor is doubled, the vibration reduction efficiency can reach 4.8% to 7.3%. Increasing the floor thickness to 2.25 times its original can meet the vibration limit requirements. As the clear distance between the two railway tunnel structures increases, the Z-vibration levels of the tower decrease almost linearly, with an insertion loss of approximately 2 dB to 3 dB for every additional 20 m. When the clear distance between tunnel structures is increased from 40 m to 80 m, the vibration impacts of the two railways on the tower can meet the limit requirements. Considering the potential deterioration of railway conditions over time after opening, the heavy vibration-reducing tracks still have a margin of 2.4 dB from the standard limit. Therefore, it is recommended to use heavy vibration-reducing tracks to reduce the impact of train-induced vibrations on the tower. The research findings can provide empirical guidance for related engineering projects.

参考文献/References:

[1] 陈以庭, 冯读贝, 陆林兴, 等. 铁路穿越机场塔台引起的车致振动响应研究[J]. 中国民航大学学报, 2022, 40(3): 15-22.
CHEN Yiting, FENG Dubei, LU Linxing, et al. Research on Vehicle-induced Vibration Response Caused by Railway Crossing Airport Tower[J]. Journal of Civil Aviation University of China, 2022, 40(3): 15-22.
[2] 张健伟, 张高明, 颜锋, 等. 北京新机场酒店建筑列车振动及列车风研究[J]. 建筑科学, 2020, 36(11): 138-144.
ZHANG Jianwei, ZHANG Gaoming, YAN Feng, et al. Study on Vibration and Wind Induced by High Speed Train in Hotel of Beijing New International Airport[J]. Building Science, 2020, 36(11): 138-144.
[3] 张高明,王甫来,申朝旭,等.青岛胶东国际机场列车振动现场实测及分析研究[J/OL].铁道标准设计,1-8[2024-12-27].https://doi.org/10.13238/j.issn.1004-2954.202308180001.
ZHANG Gaoming, WANG Fulai, SHEN Zhaoxu, et al. Field Measurement and Analysis of Train Vibration of Qingdao New Airport High Speed Railway[J/OL]. Railway Standard Design, 1-8[2024-12-27]. https://doi.org/10.13238/j.issn.1004-2954.202308180001.
[4] 赵明, 陈华, 王春华. 杭州萧山国际机场三期结构列车振动影响研究[J]. 施工技术(中英文), 2024, 53(1): 153-157.
ZHAO Ming, CHEN Hua, WANG Chunhua. Study on Vibration Effect of Train at Structure of Hangzhou Xiaoshan International Airport Phase Ⅲ[J]. Construction Technology, 2024, 53(1): 153-157.
[5] 李鸿志, 王梯, 陈以庭. 高速铁路引入对空铁一体枢纽振动和噪音影响及控制措施研究[J]. 高速铁路技术, 2024, 15(5): 16-23.
LI Hongzhi, WANG Ti, CHEN Yiting. Study on High-speed Train-induced Structural Vibration and Noise of Airport-railway Integrated Hubs and Control Measures[J]. High Speed Railway Technology, 2024, 15(5): 16-23.
[6] 代丰, 杨吉忠, 冯读贝, 等. 400 km/h高速铁路车致环境振动预测方法和控制技术研究现状与展望[J]. 高速铁路技术, 2022, 13(4): 36-39.
DAI Feng, YANG Jizhong, FENG Dubei, et al. Research Status and Outlook of Prediction Method and Control Technologies for Train-induced Environmental Vibration for 400 km/h High-speed Railways[J]. High Speed Railway Technology, 2022, 13(4): 36-39.
[7] 牛建青,金旭炜,杨吉忠,等.成都至自贡高速铁路引入天府机场方案分析[J].高速铁路技术, 2022, 13(2): 80-85.
NIU Jianqing, JIN Xuwei,YANG Jizhong, et al. Scheme Analysis of Introducing Chengdu-Zigong High-speed Railway into Chengdu Tianfu International Airport[J]. High Speed Railway Technology, 2022, 13(2): 80-85.
[8] GB 10070-1988 城市区域环境振动标准[S].
GB 10070-1988 Standard of Environmental Vibration in Urban Area[S].
[9] CCAR-93TM-R5民用航空空中交通管理规则[S].
CCAR-93TM-R5 Civil Aviation Air Traffic Management Regulations [S].
[10] 翟婉明. 车辆-轨道耦合动力学[M]. 4版. 北京: 科学出版社, 2015.
ZHAI Wanming. Vehicle-track Coupled Dynamics[M]. 4th ed. Beijing: Science Press, 2015.
[11] Hertz B H. On the Contact of Elastic Solids. [J]. Reine und angewandte Mathematik, 92: 156-171, 1882.
[12] Kalker J J. On the Rolling Contact of Two Elastic Bodies in the Presence of Dry Friction [D]. Netherlands: Delft University of Technology, 1967.
[13] Shen Z Y, Hedrick J K, Elkins J A.A Comparison of Alternative Creep Force Models for Rail Vehicle Dynamic Analysis[J].Vehicle System Dynamics, 1983, 12(1-3):79-83.
[14] 冯读贝, 杨吉忠, 胡连军. 列车-轨道-桥梁相互作用分布式仿真平台的研发[J]. 高速铁路技术, 2017, 8(1): 76-80, 90.
FENG Dubei, YANG Jizhong, HU Lianjun. Research and Development of Train-track-bridge Interaction Distributed Simulation Platform[J]. High Speed Railway Technology, 2017, 8(1): 76-80, 90.
[15] 谷音, 刘晶波, 杜义欣. 三维一致粘弹性人工边界及等效粘弹性边界单元[J]. 工程力学, 2007, 24(12): 31-37.
GU Yin, LIU Jingbo, DU Yixin. 3D Consistent Viscous-spring Artificial Boundary and Viscous-spring Boundary Element[J]. Engineering Mechanics, 2007, 24(12): 31-37.

相似文献/References:

[1]任俊桦.基于类比分析的高速铁路和城际铁路运量预测研究[J].高速铁路技术,2023,14(01):54.[doi:10.12098/j.issn.1674-8247.2023.01.010]
 REN Junhua.A Study on Forecast of Traffic Volume for High-speed Railway and Intercity Railway Based on Analog Analysis[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(01):54.[doi:10.12098/j.issn.1674-8247.2023.01.010]
[2]周 琛.山区铁路建设运营与沿线航空基础设施协同发展研究[J].高速铁路技术,2024,15(02):61.[doi:10.12098/j.issn.1674-8247.2024.02.011]
 ZHOU Chen.Study on Coordinated Development between Mountain Railway Construction and Operation and Aviation Infrastructure along the Line[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(01):61.[doi:10.12098/j.issn.1674-8247.2024.02.011]
[3]李宝银.多层次轨道交通一体化运营策略和标准体系研究[J].高速铁路技术,2024,15(06):51.[doi:10.12098/j.issn.1674-8247.2024.06.009]
 LI Baoyin.Study on Integrated Operation Strategies and Standard Systems for Multi-level Rail Transit[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(01):51.[doi:10.12098/j.issn.1674-8247.2024.06.009]

备注/Memo

备注/Memo:
收稿日期:2024-06-25
作者简介:陈以庭(1995-),男,工程师。
更新日期/Last Update: 2025-02-20