参考文献/References:
[1] 徐佳毅. 双碳经济下上海市海铁联运发展的环保效益分析[J]. 高速铁路技术, 2024, 15(1): 53-57.
XU Jiayi. Analysis on Environmental Benefits of Developing Sea-rail Intermodal Transport in Shanghai within the Context of “Dual Carbon” Economy[J]. High Speed Railway Technology, 2024, 15(1): 53-57.
[2] 宋洪锐, 胥岚月, 曾勇. 面向铁路选线的全生命周期减碳效益估算方法[J]. 高速铁路技术, 2024, 15(1): 58-62, 67.
SONG Hongrui, XU Lanyue, ZENG Yong. A Method for Estimating Full Life Cycle Carbon Reduction Benefit for Railway Route Selection[J]. High Speed Railway Technology, 2024, 15(1): 58-62, 67.
[3] 牟如强, 陈春俊. 基于模糊PID的高速列车横向振动控制研究[J]. 机械设计与研究, 2023, 39(5): 158-165, 171.
MOU Ruqiang, CHEN Chunjun. Research on Lateral Vibration Control of High-speed Train Based on Fuzzy PID[J]. Machine Design & Research, 2023, 39(5): 158-165, 171.
[4] 孟建军, 沈燕妮, 李德仓, 等. 基于GMA的列车主动悬挂系统垂向振动分析[J]. 计算机仿真, 2023, 40(10): 162-166.
MENG Jianjun, SHEN Yanni, LI Decang, et al. Analysis and Simulation of Vertical Vibration of Train Active Suspension System Based on GMA[J]. Computer Simulation, 2023, 40(10): 162-166.
[5] GAO Z Y, TIAN B, WU D P, et al. Study on Semi-active Control of Running Stability in the High-speed Train under Unsteady Aerodynamic Loads and Track Excitation[J]. Vehicle System Dynamics, 2021, 59(1): 101-114.
[6] LI Decang, MENG Jianjun, BAI Huan, et al. Active Control Strategy for the Running Attitude of High-speed Train under Strong Crosswind Condition[J]. Vehicle System Dynamics, 2018, 56(7): 1028-1050.
[7] 曹青松, 王明翔, 陶晶. 列车主动悬挂预测控制算法研究[J]. 噪声与振动控制, 2016, 36(1): 21-25.
CAO Qingsong, WANG Mingxiang, TAO Jing. Study on the Predictive Control Algorithm for Train's Active Suspension Systems[J]. Noise and Vibration Control, 2016, 36(1): 21-25.
[8] 郭思达, 刘泽, 许思传. 质子交换膜燃料电池过氧比LQR最优控制策略[J]. 同济大学学报(自然科学版), 2022, 50(S1): 205-210.
GUO Sida, LIU Ze, XU Sichuan. Optimal Control Strategy of Peroxide Ratio LQR for Proton Exchange Membrane Fuel Cells[J]. Journal of Tongji University(Natural Science), 2022, 50(S1): 205-210.
[9] 毕悦, 刘天琪, 李保宏. 基于改进LQR的交直流低频振荡协调控制策略[J]. 电力系统及其自动化学报, 2018, 30(5): 80-85.
BI Yue, LIU Tianqi, LI Baohong. Coordinated Control Strategy for AC/DC Low-frequency Oscillations Based on Improved LQR[J]. Proceedings of the CSU-EPSA, 2018, 30(5): 80-85.
[10] 崔士鹏, 孙永军, 刘伊威, 等. 柔性关节机械臂最优控制方法研究[J]. 电机与控制学报, 2021, 25(5): 119-130.
CUI Shipeng, SUN Yongjun, LIU Yiwei, et al. Optimal Control for Flexible Joint Manipulators[J]. Electric Machines and Control, 2021, 25(5): 119-130.
[11] 韩铖, 张彦军. 基于遗传算法的四旋翼飞行器最优控制[J]. 电光与控制, 2018, 25(1): 28-33.
HAN Cheng, ZHANG Yanjun. Optimal Control for Quad-Rotor Aircrafts Based on Genetic Algorithm[J]. Electronics Optics & Control, 2018, 25(1): 28-33.
[12] 隋官昇, 王昊斌, 周草草, 等. 最优控制理论在智能汽车横向控制中的应用[J]. 汽车实用技术, 2021, 46(6): 48-51.
SUI Guansheng, WANG Haobin, ZHOU Caocao, et al. Application of Optimal Control in Lateral Control of Intelligent Vehicle[J]. Automobile Applied Technology, 2021, 46(6): 48-51.
[13] WANG Yong, LI Haoxuan, MENG Haodong, et al. Dynamic Characteristics of Underframe Semi-active Inerter-based Suspended Device for High-speed Train Based on LQR Control[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2022: 141722.
[14] LIU Mingchun, GU Feihong, ZHANG Yuanzhi. Ride Comfort Optimization of In-wheel-motor Electric Vehicles with In-wheel Vibration Absorbers[J]. Energies, 2017, 10(10): 1647.
[15] 张进秋, 彭虎, 张建, 等. 车辆悬挂LQR主动控制权矩阵权重参数优化[J]. 振动与冲击, 2018, 37(22): 214-219.
ZHANG Jinqiu, PENG Hu, ZHANG Jian, et al. Weight Parameters Optimization for the Weight Matrices in a Vehicle Suspension LQR Active Control[J]. Journal of Vibration and Shock, 2018, 37(22): 214-219.
[16] 蓝会立, 高远, 范健文, 等. 基于遗传算法的车辆4自由度主动悬架最优控制研究[J]. 合肥工业大学学报(自然科学版), 2014, 37(11): 1304-1310.
LAN Huili, GAO Yuan, FAN Jianwen, et al. Optimal Control of Vehicle Active Suspension with Four Degrees of Freedom Based on Genetic Algorithm[J]. Journal of Hefei University of Technology(Natural Science), 2014, 37(11): 1304-1310.
[17] 周劲松, 任利惠, 沈钢, 等. 高速列车横向平稳性主动控制规律研究[J]. 铁道学报, 2004, 26(5): 31-35.
ZHOU Jinsong, REN Lihui, SHEN Gang, et al. Inter-vehicle Active Suspension Control Strategies to Improve Lateral Riding Quality in High-speed Railway Trains[J]. Journal of the China Railway Society, 2004, 26(5): 31-35.
[18] 薛蕊, 任尊松, 查浩, 等. 非稳态横风对货运动车组车体-集装器系统横向振动特性的影响[J]. 振动工程学报, 2020, 33(3): 540-549.
XUE Rui, REN Zunsong, ZHA Hao, et al. The Lateral Vibration Characteristic of the Carbody-container Coupled Model of High-speed Freight EMU under Unsteady Crosswind[J]. Journal of Vibration Engineering, 2020, 33(3): 540-549.
[19] 张国胜, 方宗德, 李爱民, 等. 基于遗传算法的主动悬架最优控制方法研究[J]. 中国机械工程, 2007, 18(12): 1491-1495.
ZHANG Guosheng, FANG Zongde, LI Aimin, et al. Optimal Control of the Active Suspension Based on the Genetic Algorithm[J]. China Mechanical Engineering, 2007, 18(12): 1491-1495.
[20] TB/T 3352-2014高速铁路无砟轨道不平顺谱[S].
TB/T 3352-2014 PSD of Ballastless Track Irregularities of High-speed Railway[S].
[21] 刘付山, 曾志平, 王卫东. 轨道随机不平顺的谱表示-随机函数模拟及应用[J]. 铁道学报, 2021, 43(5): 121-127.
LIU Fushan, ZENG Zhiping, WANG Weidong. Simulation and Application of Random Track Irregularity by Spectral Representation and Stochastic Function[J]. Journal of the China Railway Society, 2021, 43(5): 121-127.
[22] 张志刚, 陈金晶, 姚炼红, 等. 基于GA-LQR两挡DCT离合器目标转矩控制[J]. 机械传动, 2020, 44(3): 28-33.
ZHANG Zhigang, CHEN Jinjing, YAO Lianhong, et al. Target Torque Control of Two-speed DCT Clutch Based on GA-LQR[J]. Journal of Mechanical Transmission, 2020, 44(3): 28-33.
-------
---NEXT MATCH---
参考文献[19]。本文采用具有高精度、高效且稳定的新型显示积分方法进行求解,其积分步长为1×10-4。
2 模型主要计算参数
2.1 模型参数
本文采用的列车、钢轨、扣件、轨道板及板下支撑元件计算参数如表2所示。
表2 车辆-轨道耦合系统关键参数表
参数 数值车体/转向架/轮对质量/kg 38 884,2 600,2 100车体绕x、y、z轴转动惯量/(kg·m2)110.484,1 670.900,1 440.725转向架绕x、y、z轴转动惯量/(kg·m2)2.106,1.423,2.600轮对绕x、y、z轴转动惯量/(kg·m2)756,84,1 029钢轨/轨道板弹性模量/GPa 205.9,36.0钢轨/轨道板泊松比 0.30,0.25钢轨/轨道板密度/(kg/m3)7 860,2 500轨道板长×宽×高/(m)6.45×2.55×0.19扣件横向、垂向刚度/(MN/m)50,30扣件横向、垂向阻尼/(kN·s/m)35,30板下支撑横向、垂向面刚度/(MN/m3)250,1 250板下支撑横向、垂向面阻尼/(kN·s/m3)34.58,34.58
2.2 轨道不平顺激励
轨道不平顺采用中国高速铁路无砟轨道不平顺谱,波长范围取1~120 m。根据上述参数再经傅里叶逆变换可得不平顺空间域样本,如图4所示。
3 计算结果及分析
以CRTSⅡ型无砟轨道板为例,每块轨道板上有10组扣件,假设裂纹长度为1 m,趋势呈线性,界面光滑且垂直于轨道板长边,处于第5组和第6组扣件正中位置, 对比分析有无侧裂纹对轨道板动力响应的影
图4 轨道不平顺激励样本图
响,并针对不同车速工况对含侧裂纹轨道板的动力学性能的影响展开了研究。
3.1 侧裂纹对轨道板动力性能的影响
本文考虑一列8节编组的高速列车在随机轨道不平顺激励下以300 km/h的速度运行。在上述条件下,有无侧裂纹的轨道板模型预测时域动态响应结果如图5所示。
由图5可知,有无侧裂纹对轨道板横向和垂向均存在不同程度的差异。在轨道板垂向位移方面, 有侧裂纹的轨道板垂向位移大于无侧裂纹的轨道板,相比于无侧裂纹时,含侧裂纹的轨道板垂向最大位移增加了9.81%; 轨道板横向位移与垂向位移类似,相比于无侧裂纹时,含侧裂纹轨道板横向最大位移增加了14.57%。与无裂纹轨道板垂向和横向的加速度最大值(垂向:48.59 m/s2; 横向:3.83 m/s2)相比,含侧裂纹轨道板相应方向的加速度的最大值(垂向:56.68 m/s2; 横向:7.30 m/s2)分别增大16.65%和90.60%。
图5 有无侧裂纹对轨道板6号扣件处动力响应的影响图
有无侧裂纹对车体、钢轨横向加速度的影响如图6、图7所示,轨道板有无裂纹对钢轨及车体横向加速度的影响较小。
图6 有无侧裂纹对车体横向加速度的影响图
图7 有无侧裂纹对钢轨横向加速度的影响图
3.2 车速对含侧裂纹的轨道板动力性能的影响
通过对比整个轨道板位置的动力响应可知,轨道板横向和垂向动力响应均较大的位置在靠近轨道板边缘与裂缝的交界处。因此选择靠近裂纹与轨道板边缘处的节点的响应来研究不同列车速度下(250~350 km/h)裂纹板的振动规律。在不同列车速度下,有无边裂的轨道板的横向和垂直加速度时域结果如图8~图11所示。
图8 车速对有裂纹轨道板横向加速度的影响图
图9 车速对无裂纹轨道板横向加速度的影响图
图10 车速对有裂纹轨道板垂向加速度的影响图
图11 车速对无裂纹轨道板垂向加速度的影响图
由图8~图11可知,随着速度的增加,有无侧裂纹的轨道板在横向和垂向加速度时域结果中均呈现逐步增加的趋势。无侧裂纹存在时,相比于车速250 km/h的轨道板的横向加速度最大值(0.35 g),车速350 km/h的轨道板的横向加速度最大值(0.55 g)增加了57.14%; 垂向加速度最大值(250 km/h:6.27 g; 350 km/h:9.68 g)增加了54.39%。有侧裂纹存在时,相比于车速250 km/h的轨道板的横向加速度最大值(0.58 g),车速350 km/h的轨道板的横向加速度最大值(1.33 g)增加了129.31%; 垂向加速度最大值(250 km/h:12.18 g; 350 km/h:13.51 g)增加了10.92%。由此可知,车速对有侧裂纹轨道板横向加速度的影响较大,同时,有侧裂纹时的轨道板横向和垂向加速度最大值均大于无侧裂纹轨道板相应方向上的加速度最大值。
在不同列车速度下,有无侧裂纹轨道板的横向、垂直加速度均方根值的比较如图12所示。由图12可知,无裂纹轨道板和有裂纹轨道板的横向和垂直加速度的均方根值也随着列车速度的增长而逐渐增加,有侧裂纹板的均方根加速度明显大于无裂纹轨道板(完整板)。与完整板的横向和垂向加速度的均方根值相比,有侧裂纹的轨道板相应方向加速度的均方根值分别增加了2.8倍和1.9倍。此外,相比于速度250 km/h的裂纹板横向和垂向的加速度均方根值(横向:0.12 g; 垂向:2.20 g),速度350 km/h(横向:0.25 g; 垂向:2.57 g)时的均方根结果分别增加了2.1倍和1.2倍。
图12 列车速度对有无侧裂纹对轨道板动力响应的影响图
综上所述,侧裂纹的存在会在轨道板裂纹附近区域引起振动放大效应,而较高的运行速度会加剧该区域的振动(尤其是横向运动),该现象可能会导致含侧裂纹的轨道板在长期列车循环荷载作用下裂纹进一步发展,最终给轨道结构的稳定性带来挑战。
4 结束语
本文通过MATLAB-ABAQUS联合方正技术搭建了列车-侧裂纹轨道板动力相互作用的空间动力学模型,实现了列车动载荷作用下裂纹板振动状态的预测与评价。对比分析有无侧裂纹对轨道板动力响应的影响,并针对不同车速工况对含侧裂纹轨道板的动力学性能的影响展开研究。得到主要结论如下:
(1)MATLAB-ABAQUS联合仿真技术能有效解决含侧裂纹的轨道板动力学建模问题,相比于推导侧裂纹的轨道板振动解析方程,该方法具有更强的适用性和高效性。
(2)有无侧裂纹的轨道板在轨道板动力响应结果中存在显著差异。侧裂纹的存在会显著增加轨道板垂向和横向的位移与加速度,其中对横向加速度影响最为明显,增大幅值达90.60%。此外,有无裂纹轨道板的存在对钢轨和车辆动力响应的影响微小。
(3)列车速度与轨道板加速度关系密切,且均随速度的增大而逐步增大。侧裂纹的存在会在轨道板裂纹附近区域引起振动放大效应,而更高的运行速度会加剧其振动(尤其是轨道板横向运动),导致裂纹在长期列车循环荷载下进一步扩展,给轨道结构自身稳定性带来挑战。
参考文献:
[1] 向芬, 方宜, 殷明旻, 等. 某铁路无砟轨道裂缝成因分析和修补准则研究[J]. 高速铁路技术, 2024, 15(6): 40-43.
XIANG Fen, FANG Yi, YIN Mingmin, et al. Research on Crack Formation Analysis and Repair Criteria for Railway Ballastless Tracks[J]. High Speed Railway Technology, 2024, 15(6): 40-43.
[2] 朱胜阳, 蔡成标. 含裂纹的双块式无砟轨道道床垂向振动特性分析[J]. 铁道学报, 2012, 34(8): 82-86.
ZHU Shengyang, CAI Chengbiao. Analysis on Vertical Vibration Characteristics of Double-block Ballastless Roadbed with Cracks[J]. Journal of the China Railway Society, 2012, 34(8): 82-86.
[3] 赵春发, 刘建超, 毛海和, 等. 温度梯度荷载作用下CRTS II型板式无砟轨道砂浆层界面损伤分析[J]. 中国科学: 技术科学, 2018, 48(1): 79-86.
ZHAO Chunfa, LIU Jianchao, MAO Haihe, et al. Interface Damage Analysis of CA Mortar Layer of the CRTS Ⅱ Ballastless Slab Track under Temperature Gradient Loads[J]. Scientia Sinica(Technologica), 2018, 48(1): 79-86.
[4] CHO Y K, KIM S M. Experimental Analysis of Crack Width Movement of Continuously Reinforced Concrete Railway Track[J]. Engineering Structures, 2019, 194: 262-273.
[5] LUO Jun, ZHU Shengyang, ZHAI Wanming. An Efficient Model for Vehicle-slab Track Coupled Dynamic Analysis Considering Multiple Slab Cracks[J]. Construction and Building Materials, 2019, 215: 557-568.
[6] CAO Shihao, YANG Rongshan, SU Chengguang, et al. Damage Mechanism of Slab Track under the Coupling Effects of Train Load and Water[J]. Engineering Fracture Mechanics, 2016, 163: 160-175.
[7] ZHANG Jiawei, CAI Chengbiao, ZHU Shengyang, et al. Experimental Investigation on Dynamic Performance Evolution of Double-Block Ballastless Track under High-cycle Train Loads[J]. Engineering Structures, 2022, 254: 113872.
[8] 刘钰, 赵国堂, 曹毅杰, 等. 整体温升作用下纵连板式无砟轨道宽窄接缝损伤演化研究[J]. 北京交通大学学报, 2021, 45(4): 19-27.
LIU Yu, ZHAO Guotang, CAO Yijie, et al. Study on Damage Evolution of Wide and Narrow Joints in Longitudinally Connected Slab Ballastless Track under Load of Overall Temperature Rise[J]. Journal of Beijing Jiaotong University, 2021, 45(4): 19-27.
[9] 罗强, 谢宏伟, 李安洪, 等. 无砟轨道底座板离缝对路桥过渡段动力学性能影响分析[J]. 高速铁路技术, 2021, 12(2): 33-38, 49.
LUO Qiang, XIE Hongwei, LI Anhong, et al. Analysis on the Impact of Ballastless Track Base Slab Disjoint on the Dynamic Performance of Subgrade-bridge Transition Section[J]. High Speed Railway Technology, 2021, 12(2): 33-38, 49.
[10] 韦强文, 朱胜阳, 罗俊. 无砟轨道层间离缝对时速400 km高速铁路车辆-轨道系统动力特性影响[J]. 铁道标准设计, 2023, 67(3): 74-79.
WEI Qiangwen, ZHU Shengyang, LUO Jun. Study on the Influence of Ballastless Tracks Interface Debonding on the Dynamic Properties of Vehicle-track System in 400 km/h High-speed Railways[J]. Railway Standard Design, 2023, 67(3): 74-79.
[11] 赵国堂, 刘钰. CRTSⅡ型板式无砟轨道结构层间离缝机理研究[J]. 铁道学报, 2020, 42(7): 117-126.
ZHAO Guotang, LIU Yu. Mechanism Analysis of Delamination of CRTSⅡ Slab Ballastless Track Structure[J]. Journal of the China Railway Society, 2020, 42(7): 117-126.
[12] 陈宪麦, 王日吉, 徐磊, 等. 不同累积概率不平顺状态下轨道板离缝损伤研究[J]. 铁道科学与工程学报, 2023, 20(5): 1666-1676.
CHEN Xianmai, WANG Riji, XU Lei, et al. Damage of Track Slab under Different Cumulative Probability Irregularity[J]. Journal of Railway Science and Engineering, 2023, 20(5): 1666-1676.
[13] 王军, 卢朝辉, 张玄一, 等. CRTSⅡ型轨道板/CA砂浆界面内聚力模型研究[J]. 工程力学, 2022, 39(9): 72-80, 109.
WANG Jun, LU Zhaohui, ZHANG Xuanyi, et al. Research on Cohesive Zone Model of the Interface between CRTS Ⅱ Track Slab and CA Mortar[J]. Engineering Mechanics, 2022, 39(9): 72-80, 109.
[14] 林士财. 温度梯度作用下既有离缝无砟轨道结构层间损伤扩展及变形分析[J]. 铁道标准设计, 2022, 66(2): 29-35.
LIN Shicai. Analysis of Interlayer Damage Propagation and Deformation of Existing Delamination Ballastless Track Structure under Temperature Gradient[J]. Railway Standard Design, 2022, 66(2): 29-35.
[15] 赵国堂, 赵磊, 杨国涛. 列车荷载与温度梯度共同作用下单元轨道板层间局部支承效应研究[J]. 中国铁道科学, 2021, 42(6): 1-7.
ZHAO Guotang, ZHAO Lei, YANG Guotao. Study on the Local Support Effect between Layers of Unit Track Slab under the Combined Action of Vehicle Load and Temperature Gradient[J]. China Railway Science, 2021, 42(6): 1-7.
[16] 徐桂弘, 杨荣山, 刘学毅. 轨道结构裂纹在水与高频列车荷载作用下瞬态耦合分析[J]. 铁道标准设计, 2013, 57(3): 5-8, 11.
XU Guihong, YANG Rongshan, LIU Xueyi. Transient State Coupling Analysis on Track Structure Cracks under the Actions of Water and High Frequency Train Load[J]. Railway Standard Design, 2013, 57(3): 5-8, 11.
[17] 翟婉明, 姚力, 孙立, 等. 基于车辆-轨道耦合动力学的400 km/h高速铁路线路平面参数设计研究[J]. 高速铁路技术, 2021, 12(2): 1-10, 16.
ZHAI Wanming, YAO Li, SUN Li, et al. Research on Route Plan Design Parameters of 400 km/h High-speed Railway Based on Vehicle-track Coupling Dynamics[J]. High Speed Railway Technology, 2021, 12(2): 1-10, 16.
[18] ZHAI Zhihao, ZHU Shengyang, YANG Yun, et al. Dynamics Analysis of Train-track-bridge Coupled System Considering Spatial Flexibility of High Piers and System Longitudinal Vibrations[J]. Vehicle System Dynamics, 2023, 61(10): 2613-2637.
[19] 翟婉明. 车辆-轨道耦合动力学 [M]. 4版. 北京: 科学出版社, 2015.
ZHAI Wanming. Vehicle-track Coupled Dynamics[M]. 4th ed. Beijing: Science Press, 2015.