[1]谢宝军,刘立峰,杨岗.基于多进路防护的动车所调车防护系统设计与应用[J].高速铁路技术,2025,(01):93-97,115.[doi:10.12098/j.issn.1674-8247.2025.01.015]
 XIE Baojun LIU Lifeng YANG Gang.Design and Application of Shunting Protection System for EMU Depot Based on Multiple Route Protection[J].HIGH SPEED RAILWAY TECHNOLOGY,2025,(01):93-97,115.[doi:10.12098/j.issn.1674-8247.2025.01.015]
点击复制

基于多进路防护的动车所调车防护系统设计与应用()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
期数:
2025年01期
页码:
93-97,115
栏目:
研究创新
出版日期:
2025-02-20

文章信息/Info

Title:
Design and Application of Shunting Protection System for EMU Depot Based on Multiple Route Protection
文章编号:
1674-8247(2025)01-0093-05
作者:
谢宝军刘立峰杨岗
(中铁二院工程集团有限责任公司, 成都 610031)
Author(s):
XIE Baojun LIU Lifeng YANG Gang
(China Railway Eryuan Engineering Group Co., Ltd., Chengdu 610031, China)
关键词:
调车防护系统 多进路防护 应答器 功能优化 报文编制 工程设计
Keywords:
shunting protection system multiple route protection transponder functional optimization message formulation engineering design
分类号:
U292..2
DOI:
10.12098/j.issn.1674-8247.2025.01.015
文献标志码:
A
摘要:
动车所咽喉区调车作业频繁,冒进信号的安全防范至关重要。受站场站形布置影响,分散式调车防护装置与调车信号机距离不满足最不利条件下18 m的要求,限制了调车防护系统发挥运输安全中“技防”措施的重要效能。相关规范规定分散式调车防护系统的每套调车防护装置可带载两套报文传输模块,一定程度上提升了站场条件限制下多方向调车进路的安全防护。本文以按现行规范已实施该系统的某动车所为例,结合咽喉区道岔紧凑布置情况,分别从系统构成、系统适用场景、岔区应答器安装、系统功能设计、报文编制等方面,对多进路防护的分散式调车防护系统设计进行分析,可对不同类型的动车所调车防护系统工程设计提供参考。
Abstract:
Shunting operations in the throat area of EMU depot are frequent, and the safety precautions against overrunning signals are crucial. Affected by the layout of the station yard, the distance between the decentralized shunting protection devices and shunting signals can not meet the requirement of 18 m under the most unfavorable condition, which limits the crucial role of the shunting protection system as a “technical prevention” measure in ensuring transportation safety. According to the specification, each set of decentralized shunting protection devices can carry two sets of message transmission modules, enhancing the safety protection for multi-directional shunting routes under limited station yard conditions to some extent. Taking an EMU depot where the system has been implemented according to current specifications as an example, and considering the compact arrangement of switches in the throat area, this paper analyzed the design of a decentralized shunting protection system with multi-route protection from aspects such as system composition, applicable scenarios of the system, installation of transponders in the switch area, system function design, and message formulation. It can serve as a reference for the engineering design of shunting protection systems in various types of EMU depots.

参考文献/References:

[1] 李鹏斐. 动车段调车防护系统中轨旁电子单元的研究[D]. 北京: 北京交通大学, 2014.
LI Pengfei. Research on Electronic Unit beside the Track in Shunting Protection System of EMU[D]. Beijing: Beijing Jiaotong University, 2014.
[2] 李超. 动车段所调车防护系统工程优化设计[J]. 铁道通信信号, 2015, 51(6): 1-3.
LI Chao. Construction Optimization Design for Shunting Protection System of EMU Depot[J]. Railway Signalling & Communication, 2015, 51(6): 1-3.
[3] Q/CR 933-2022 动车段(所)调车防护系统技术规范[S].
Q/CR 933-2022 Technical Specification of Shunting Protection System at Electrical Multiple Unit Depot [S].
[4] TJ/DW 164-2014动车段(所)调车防护系统暂行技术条件[S].
TJ/DW 164-2014 Temporary Technical Specification of Shunting Protection System at Electrical Multiple Unit Depot [S].
[5] 张继辉. 简谈动车段(所)调车防护系统的现场实施与应用[J]. 铁路通信信号工程技术, 2018, 15(12): 16-19.
ZHANG Jihui. Field Implementation and Application of Dispatching Protection System in EMUs Depots[J]. Railway Signalling & Communication Engineering, 2018, 15(12): 16-19.
[6] Q/CR 716-2019应答器传输系统技术规范[S].
Q/CR 716-2019 Technical Specification for Balise Transmission System [S].
[7] 周赟, 杨启武, 赵东锋, 等. 套轨铁路信号设计中若干关键技术问题的探讨[J]. 高速铁路技术, 2020, 11(5): 68-72.
ZHOU Yun, YANG Qiwu, ZHAO Dongfeng, et al. Discussion on Some Key Technical Problems in Signal Design of Gauntleted-gauge Railway[J]. High Speed Railway Technology, 2020, 11(5): 68-72.
[8] 王俊. 动车所调车防护系统应答器设置及控制方案研究[J]. 铁道建筑技术, 2021(3): 34-38.
WANG Jun. Research on Setting and Control of Balises for Shunting Protection System in EMU Depot[J]. Railway Construction Technology, 2021(3): 34-38.
[9] 陈德伟. 列控应答器系统在钢桁梁桥上的应用研究[J]. 铁路通信信号工程技术, 2018, 15(11): 6-9.
CHEN Dewei. Study on Application of Balise System in Steel Truss Bridge[J]. Railway Signalling & Communication Engineering, 2018, 15(11): 6-9.
[10] 朱林富, 李鹍, 王俊飞, 等. 高速铁路应答器传输系统复杂环境适应性研究[J]. 铁道学报, 2021, 43(12): 62-69.
ZHU Linfu, LI Kun, WANG Junfei, et al. Study on Adaptability of High-speed Railway Balise Transmission System in Complex Environment[J]. Journal of the China Railway Society, 2021, 43(12): 62-69.
[11] 孟亚松. 应答器A接口传输性能的分析[J]. 高速铁路技术, 2017, 8(2): 6-9, 34.
MENG Yasong. Analysis on Transmission Performance of Interface in Balise System[J]. High Speed Railway Technology, 2017, 8(2): 6-9, 34.
[12] 王亭岭, 赵君, 查园园, 等. 高速铁路列控车载设备故障诊断的研究及应用[J]. 高速铁路技术, 2024, 15(3): 55-61.
WANG Tingling, ZHAO Jun, ZHA Yuanyuan, et al. Study on Fault Diagnosis for Onboard Equipment in High-speed Railway Train Control Systems and Application[J]. High Speed Railway Technology, 2024, 15(3): 55-61.
[13] 黄宗庆. TDCS/CTC系统通道状态检测技术研究[J]. 高速铁路技术, 2023, 14(4): 45-49.
HUANG Zongqing. A Study on Channel State Detection Technology in TDCS/CTC System[J]. High Speed Railway Technology, 2023, 14(4): 45-49.

备注/Memo

备注/Memo:
收稿日期:2024-04-10
作者简介:谢宝军(1987-),男,高级工程师。
基金项目:中铁二院工程集团有限责任公司科技研究开发计划课题(KDNQ241056)
更新日期/Last Update: 2025-02-20