[1]王富斌.磁浮列车悬浮电磁铁温度监测系统设计[J].高速铁路技术,2025,(02):83-86.[doi:10.12098/j.issn.1674-8247.2025.02.013]
 WANG Fubin.Design of a Temperature Measurement System for Suspension Electromagnets in Maglev Trains[J].HIGH SPEED RAILWAY TECHNOLOGY,2025,(02):83-86.[doi:10.12098/j.issn.1674-8247.2025.02.013]
点击复制

磁浮列车悬浮电磁铁温度监测系统设计()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
期数:
2025年02期
页码:
83-86
栏目:
研究创新
出版日期:
2025-04-20

文章信息/Info

Title:
Design of a Temperature Measurement System for Suspension Electromagnets in Maglev Trains
文章编号:
1674-8247(2025)02-0083-04
作者:
王富斌
(中铁二院工程集团有限责任公司, 成都 610031)
Author(s):
WANG Fubin
(China Railway Eryuan Engineering Group Co., Ltd., Chengdu 610031, China)
关键词:
磁浮列车 悬浮电磁铁 非接触式 测温
Keywords:
maglev trains suspension electromagnet non-contact temperature measurement
分类号:
U266.4
DOI:
10.12098/j.issn.1674-8247.2025.02.013
文献标志码:
A
摘要:
悬浮电磁铁作为磁浮列车的核心部件,其性能直接影响列车的运行安全与稳定性。针对行车速度、静浮时间及户外环境温度等因素导致的线圈温升问题,以及由此引发的悬浮电磁铁过热、表面裂纹等安全隐患,本文设计并实现了一种非接触式无源超高频射频测温系统。通过试验验证,本系统能够对磁浮列车悬浮电磁铁温度进行实时监测与精确定位,且在稳定性、响应速度和抗干扰等方面均表现良好的性能。
Abstract:
As a core component of maglev trains, the performance of suspension electromagnets directly affects the operational safety and stability of the trains. To address the coil temperature rise caused by factors such as train speed, static levitation duration, and ambient outdoor temperature, as well as the resulting safety risks including overheating and surface cracks in suspension electromagnets, this paper designed and implemented a non-contact, passive ultra-high-frequency(UHF)radio-frequency temperature measurement system. Experimental results demonstrate that the system is capable of real-time monitoring and precise localization of the temperature of suspension electromagnets in maglev trains, exhibiting excellent performance in terms of stability, response speed, and anti-interference capabilities.

参考文献/References:

[1] 薛齐豪, 刘放, 梁成, 等. 磁悬浮列车悬浮电磁铁结构优化方法研究[J]. 机械设计与制造, 2020(5): 202-205.
XUE Qihao, LIU Fang, LIANG Cheng, et al. Research on Suspension Electromagnet Structure and Optimization Method[J]. Machinery Design & Manufacture, 2020(5): 202-205.
[2] 周磊, 肖绯雄. 长定子中低速磁浮轨道动力学分析与结构优化[J]. 机械设计与制造, 2013(1): 107-109.
ZHOU Lei, XIAO Feixiong. Dynamic Analysis and Structure Optimization of Long Stator of Medium and Low Speed Maglev Track[J]. Machinery Design & Manufacture, 2013(1): 107-109.
[3] 侯圣杰, 刘先恺, 汤凯谊, 等. 高速磁浮交通环境与灾害监测预警系统方案研究[J]. 高速铁路技术, 2022, 13(1): 7-11, 38.
HOU Shengjie, LIU Xiankai, TANG Kaiyi, et al. Study on Plan of High-speed Maglev Traffic Environment and Disaster Monitoring and Early Warning System[J]. High Speed Railway Technology, 2022, 13(1): 7-11, 38.
[4] 孟占国, 李云峰, 滕辉, 等. 高速磁浮灾害防护系统研究[J]. 高速铁路技术, 2024, 15(6): 34-39.
MENG Zhanguo, LI Yunfeng, TENG Hui, et al. Research on High-speed Maglev Disaster Prevention System[J]. High Speed Railway Technology, 2024, 15(6): 34-39.
[5] 刘少克. 磁悬浮列车用混合悬浮电磁铁温度场建模与仿真[J]. 机车电传动, 2011(6): 32-34.
LIU Shaoke. Modeling and Simulation of Temperature Field for Mixing Suspension Electromagnet of Maglev Train[J]. Electric Drive for Locomotives, 2011(6): 32-34.
[6] 佟来生, 李海涛, 张文跃, 等. 磁浮列车悬浮电磁铁温度场分析与散热优化研究[J]. 电力机车与城轨车辆, 2022, 45(4): 13-18, 24.
TONG Laisheng, LI Haitao, ZHANG Wenyue, et al. Temperature Field Analysis and Heat Dissipation Optimization of Suspension Electromagnet for Maglev Train[J]. Electric Locomotives & Mass Transit Vehicles, 2022, 45(4): 13-18, 24.
[7] 黄海涛, 李志国. 长沙磁浮列车电磁铁的应用研究[J]. 技术与市场, 2021, 28(1): 39-40.
HUANG Haitao, LI Zhiguo. Study on Application of Electromagnet in Changsha Maglev Train[J]. Technology and Market, 2021, 28(1): 39-40.
[8] 顾晓辉, 杨绍普, 刘文朋, 等. 高速列车轴箱轴承健康监测与故障诊断研究综述[J]. 力学学报, 2022, 54(7): 1780-1796.
GU Xiaohui, YANG Shaopu, LIU Wenpeng, et al. Review of Health Monitoring and Fault Diagnosis of Axle-box Bearing of High-speed Train[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1780-1796.
[9] 韩志远, 盖建宝, 李晓锋, 等. 动车组轴温报警故障分析及优化[J]. 中国铁路, 2023(10): 39-44.
HAN Zhiyuan, GAI Jianbao, LI Xiaofeng, et al. Fault Analysis and Optimization of EMU Axle Temperature Alarm[J]. China Railway, 2023(10): 39-44.
[10] 李润德. 超低功耗无源超高频射频识别芯片射频/模拟前端设计[D]. 西安: 西安电子科技大学, 2013.
LI Runde. Design of RF/analog Front-end of Ultra-low Power Passive UHF RFID Chip[D]. Xi'an: Xidian University, 2013.

备注/Memo

备注/Memo:
收稿日期:2025-03-24
作者简介:王富斌(1993-),男,工程师。
更新日期/Last Update: 2025-04-20