参考文献/References:
[1] 李术才,刘斌,孙怀凤,等. 隧道施工超前地质预报研究现状及发展趋势[J]. 岩石力学与工程学报,2014,33(6):1090-1113. LI Shucai,LIU Bin,SUN Huaifeng,et al. State of Art and Trends of Advanced Geological Prediction in Tunnel Construction[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(6):1090-1113.
[2] 肖宽怀. 隧道超前预报地球物理方法及应用研究[D]. 成都:成都理工大学,2012. XIAO Kuanhuai. Tunnel Advanced Prediction Geophysical Method and Application Research[D]. Chengdu:Chengdu University of Technology,2012.
[3] 王凯,牟元存,李星. 综合超前预报技术在复杂地质隧道中的应用[J]. 高速铁路技术,2022,13(4):82-86. WANG Kai,MU Yuancun,LI Xing. Application of Comprehensive Prediction Technology in Tunnels with Complex Geological Conditions [J]. High Speed Railway Technology,2022,13(4):82-86.
[4] 钟明文,李文菊,房昱纬,等. 综合地质预报在公路隧道施工中的应用[J]. 勘察科学技术,2021(2):52-55. ZHONG Mingwen,LI Wenju,FANG Yuwei,et al. Application of Comprehensive Geological Forecast in Highway Tunnel Construction [J]. Site Investigation Science and Technology,2021(2):52-55.
[5] 温树林,吴世林. TSP203在云南元磨高速公路隧道超前地质预报中的应用[J]. 地球物理学进展,2003,18(3):465-471. WEN Shulin,WU Shilin. Application of the TSP203 System in Geological Advanced Prediction of Yuanmo Expressway Tunnel[J]. Progress In Geophysics,2003,18(3):465-471.
[6] 范佳俊. 地质雷达在地铁隧道超前地质预报中的应用研究[J].山西建筑,2017,43(2):191-193. FAN Jiajun. Study on GPR in Subway Tunnel Geological Forecast[J]. Shanxi Architecture,2017,43(2):191-193.
[7] 李俊均. 加林山隧道地质雷达超前预报准确性评判研究[J]. 广东交通职业技术学院学报,2017,16(3):42-47. LI Junjun. Evaluation of the Prediction Accuracy of the Jialinshan Tunnel Geological Radar[J]. Journal of Guangdong Communication Polytechnic,2017,16(3):42-47.
[8] 舒畅. 提高探地雷达超前地质预报精度的方法研究[J]. 铁道工程学报,2006,23(3):13-16,28. SHU Chang. Research on the Method of Improving the Precision of the GPR in Beforehand Geological Forecast[J]. Journal of Railway Engineering Society,2006,23(3):13-16,28.
[9] 马王鹏,王晓东,刘冬. 探地雷达图像异常识别中YOLO目标检测算法的研究[J]. 测绘通报,2019(S1):72-76. MA Wangpeng,WANG Xiaodong,LIU Dong. Research on YOLO Target Detection Algorithm in Ground Penetrating Radar Image Anomaly Recognition[J]. Bulletin of Surveying and Mapping, 2019(S1):72-76.
[10]冯德山,杨子龙. 基于深度学习的隧道衬砌结构物探地雷达图像自动识别[J]. 地球物理学进展,2020,35(4):1552-1556. FENG Deshan,YANG Zilong. Automatic Recognition of Ground Penetrating Radar Image of Tunnel Liningstructure Based on Deep Learning[J]. Progress in Geophysics,2020,35(4):1552-1556.
[11]HE Kaiming,GKIOXARI G,DOLLAR P,et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice,Italy. IEEE,2017 :2980-2988.
[12]REN Shaoqing,HE Kaiming,GIRSHICK R,et al. Faster R-CNN:Towards Real-time Object Detection with Region Proposal Networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[13]李大军,何维龙,郭丙轩,等. 基于Mask-RCNN的建筑物目标检测算法[J]. 测绘科学,2019,44(10):172-180. LI Dajun,HE Weilong,GUO Bingxuan,et al. Building Target Detection Algorithm Based on Mask-RCNN[J]. Science of Surveying and Mapping,2019,44(10):172-180.
[14]伍锡如,邱涛涛,王耀南. 改进Mask R-CNN的交通场景多目标快速检测与分割[J]. 仪器仪表学报,2021,42(7):242-249. WU Xiru,QIU Taotao,WANG Yaonan. Multi-object Detection and Segmentation for Traffic Scene Based on Improved Mask R-CNN[J]. Chinese Journal of Scientific Instrument,2021,42(7):242-249.
[15]向伟. 基于探地雷达城市地下空间图像的探测识别研究[D].长沙:湖南大学,2014. XIANG Wei. Detection and Recognition Research on Urban Underground Space Images Based on Ground Penetrating Radar[D]. Changsha:Hunan University,2014.
[16]林春旭. 基于探地雷达和深度学习的地下目标智能探测与定位方法[D]. 广州:广州大学,2020. LIN Chunxu. Automatic Detection and Localization of Underground Target by Deep Learning Using Ground Penetrating Radar[D]. Guangzhou:Guangzhou University,2020.
[17]温世儒,杨晓华,吴霞. 基于BP神经网络的探地雷达图像特征判识与提取研究[J]. 公路,2018,63(7):312-317. WEN Shiru,YANG Xiaohua,WU Xia. Research on Intelligent Identification and Extraction of GPR Image Property Based on BP Neural Network[J]. Highway,2018,63(7):312-317.
[18]李仁最. 基于Mask R-CNN的菜品图像识别和分割算法[D]. 武汉:武汉轻工大学,2019. LI Renzui. Image Recognition and Segmentation Algorithm Based on Mask R-CNN[D]. Wuhan:Wuhan Polytechnic University,2019.
[19]张云帅. 基于Mask R-CNN改进的图像实例分割算法研究[D].西安:西安电子科技大学,2021. ZHANG Yunshuai. Improved Image Instance Segmentation Algorithm Based on Mask R-CNN[D]. Xi’an:Xidian University,2021.[20]谢文博. 基于改进Mask R-CNN的木材缺陷检测分割算法研究[D]. 哈尔滨:哈尔滨理工大学,2022. XIE Wenbo. Research of Improved Mask R-CNN-Based Detection Segmentation Algorithm for Wood Defects[D]. Harbin: Harbin University of Science and Technology,2022.
相似文献/References:
[1]刘伟,周超,金俊俊.不同地质雷达设备在铁路工程隐伏岩溶探测中的应用与对比[J].高速铁路技术,2024,15(04):82.[doi:10.12098/j.issn.1674-8247.2024.04.015]
LIU Wei,ZHOU Chao,JIN Junjun.Application and Comparison of Different Ground Penetrating Radar Systems in the Detection of Concealed Karst in Railway Engineering[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(02):82.[doi:10.12098/j.issn.1674-8247.2024.04.015]