[1]李鸿志,王梯,陈以庭.高速铁路引入对空铁一体枢纽振动和噪音影响及控制措施研究[J].高速铁路技术,2024,15(05):16-23.[doi:10.12098/j.issn.1674-8247.2024.05.003]
 LI Hongzhi,WANG Ti,CHEN Yiting.Study on High-speed Train-induced Structural Vibration and Noise of Airport-Railway Integrated Hubs and Control Measures[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(05):16-23.[doi:10.12098/j.issn.1674-8247.2024.05.003]
点击复制

高速铁路引入对空铁一体枢纽振动和噪音影响及控制措施研究()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
15卷
期数:
2024年05期
页码:
16-23
栏目:
理论探索
出版日期:
2024-10-30

文章信息/Info

Title:
Study on High-speed Train-induced Structural Vibration and Noise of Airport-Railway Integrated Hubs and Control Measures
文章编号:
1674-8247(2024)05-0016-08
作者:
李鸿志1王梯1陈以庭2
(1.广东省铁路建设投资集团有限公司, 广州 510655; 2.中铁二院工程集团有限责任公司, 成都 610031)
Author(s):
LI Hongzhi1WANG Ti1CHEN Yiting2
(1.Guangdong Provincial Railway Construction Investment Group Co., Ltd., Guangzhou 510655,China; 2.China Railway Eryuan Engineering Group Co., Ltd., Chengdu 610031,China)
关键词:
车辆-轨道耦合动力学 环境振动 二次结构噪声 基础隔振 高速铁路
Keywords:
train-track coupled dynamics environmental vibrations secondary structural noise foundation isolation high-speed railway
分类号:
U213.2
DOI:
10.12098/j.issn.1674-8247.2024.05.003
文献标志码:
A
摘要:
本文针对某机场航站楼及综合交通换乘中心(GTC)的实际工程项目,建立了列车-轨道空间耦合动力学模型、轨道-土体-建筑物三维有限元模型及建筑物结构噪声分析模型,评估了高速铁路及地铁行车所致振动对航站楼及GTC建筑物的影响,并分析了建筑物基础隔振措施的隔振效果。结果表明:采取基础隔振措施前,GTC建筑物内旅客过夜用房区域的最大Z振级和二次结构噪声分别达到74.4 dB和45.3 dB(A),航站楼建筑的最大Z振级和二次结构噪声分别为74.6 dB和46.6 dB(A),均超出了标准GB 10070-1988和JGJ/T 170-2009规定的限值。采取基础隔振措施后,GTC和航站楼内Z振级分别减小了6.5~10 dB和6~9.9 dB,二次结构噪声分别减小了9.8~11.2 dB(A)和6.4~10.5 dB(A),均满足标准GB 10070-1988和JGJ/T 170-2009规定的夜间限值。研究结果对于铁路与航站楼的综合开发建设具有实际指导意义。
Abstract:
A spatial train-track coupled dynamic model, 3D finite element models of track-soil-building system, as well as building structural noise analysis model are established to evaluate the structural vibrations and noises of airport terminal building and a ground traffic center(GTC)induced by high-speed and subway trains. The isolation effectiveness of building foundation isolation measures is also investigated. The results show that, before implementing foundation isolation measures, the maximum Z-vibration level and structural noise of the GTC building reached 74.4 dB and 45.3 dB(A), while those in the terminal building were 74.6 dB and 46.6 dB(A). All the values exceed the limits specified in the standard GB 10070-1988 and JGJ/T 170-2009. After adopting foundation isolation measures, the Z-vibration levels of the GTC and terminal were decreased by 6.5~10 dB and 6~9.9 dB respectively, and their structural noise was decreased by 9.8~11.2 dB(A)and 6.4~10.5 dB(A), both meeting the nighttime limits specified in standards GB 10070-1988 and JGJ/T 170-2009. The research findings have practical guiding significance for the integrated development and construction of railways and airport terminals.

参考文献/References:

[1] 中共中央,国务院. 国家综合立体交通网规划纲要[Z]. 国务院公报,2021年第8号.
Central Committee of the Communist Party of China, State Council. Outline of the National Integrated Three-dimensional Transportation Network [Z]. State Council Bulletin, No. 8, 2021.
[2] 颜锋, 祁跃, 何连华, 等. 北京大兴国际机场的列车振动影响研究[J]. 建筑科学, 2017, 33(5): 8-13.
YAN Feng, QI Yue, HE Lianhua, et al. Study on the Vibration Induced by High Speed Train in Beijing Daxing International Airport[J]. Building Science, 2017, 33(5): 8-13.
[3] 黄世明. 轨道交通与建筑物共建结构车致振动舒适度评价[D]. 武汉: 武汉理工大学, 2013.
HUANG Shiming. Comfort Evaluation of Vehicle-induced Vibration of Rail Transit and Building Co-construction Structure[D]. Wuhan: Wuhan University of Technology, 2013.
[4] 张凌, 雷晓燕, 冯青松, 等. 高铁综合交通枢纽车站结构振动传播的测试分析[J]. 中国科学: 技术科学, 2019, 49(9): 1107-1116.
ZHANG Ling, LEI Xiaoyan, FENG Qingsong, et al. An Experimental Study on the Vibration Propagation of High-speed Railway Integrated Transportation Hub Station Structure[J]. Scientia Sinica(Technologica), 2019, 49(9): 1107-1116.
[5] 谢伟平, 袁葵, 孙亮明. 地铁车辆段上盖建筑车致振动试验[J]. 建筑科学与工程学报, 2020, 37(3): 99-107.
XIE Weiping, YUAN Kui, SUN Liangming. Train-induced Vibration Test of Metro Depot Over-track Buildings[J]. Journal of Architecture and Civil Engineering, 2020, 37(3): 99-107.
[6] YANG Jianjin, ZHU Shengyang, ZHAI Wanming, et al. Prediction and Mitigation of Train-induced Vibrations of Large-scale Building Constructed on Subway Tunnel[J]. Science of the Total Environment, 2019, 668: 485-499.
[7] SADEGHI J, ESMAEILI M H. Safe Distance of Cultural and Historical Buildings from Subway Lines[J]. Soil Dynamics and Earthquake Engineering, 2017, 96: 89-103.
[8] 代丰,杨吉忠,冯读贝,等.400 km/h 高速铁路车致环境振动预测方法和控制技术研究现状与展望[J].高速铁路技术,2022,13(4):36 -39.
DAl Feng, YANG Jizhong, FENG Dubei, et al. Research Status and Outlook of Prediction Method and Control Technologies for Train-induced Environmental Vibration for 400 km/h High-speed Railways[J]. High Speed Railway Technology, 2022, 13(4):36 -39.
[9] 牛建青,金旭炜,杨吉忠,等.成都至自贡高速铁路引人天府机场方案分析[J].高速铁路技术,2022,13(2):80-85.
NIU Jianqing, JIN Xuwei, YANG Jizhong, et al. Scheme Analysis of Introducing Chengdu-Zigong High-speed Railway into Chengdu Tianfu International Airport[J]. High Speed Railway Technology, 2022,13(2):80-85.
[10] TB/T 3352-2014高速铁路无砟轨道不平顺谱 [S].
TB/T 3352-2014 PSD of Ballastless Track Irregularities of High-speed Railway [S].
[11] 刘晶波, 谷音, 杜义欣. 一致粘弹性人工边界及粘弹性边界单元[J]. 岩土工程学报, 2006, 28(9): 1070-1075.
LIU Jingbo, GU Yin, DU Yixin. Consistent Viscous-spring Artificial Boundaries and Viscous-spring Boundary Elements[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1070-1075.
[12] GB 10070-1988 城市区域环境振动标准 [S].
GB 10070-1988 Standard of Environmental Vibration in Urban Area[S].
[13] JGJ/T 170-2009 城市轨道交通引起建筑物振动与二次辐射噪声限值及其测量方法标准[S].
JGJ/T 170-2009 Standard for Limit and Measuring Method of Building Vibration and Secondary Noise Caused by Urban Rail Transit[S].

备注/Memo

备注/Memo:
收稿日期:2024-04-25
作者简介:李鸿志(1979-), 女,经济师。
更新日期/Last Update: 2024-10-30