[1]韦宜霏,崔光耀,党双宝,等.斜井交叉隧道施工阶段CO分布规律以及通风优化研究[J].高速铁路技术,2025,(02):39-45.[doi:10.12098/j.issn.1674-8247.2025.02.006]
 WEI Yifei CUI Guangyao DANG Shuangbao HOU Wenxue.Study on CO Distribution Pattern and Ventilation Optimization during the Construction Phase of Inclined Shaft Intersecting Tunnel[J].HIGH SPEED RAILWAY TECHNOLOGY,2025,(02):39-45.[doi:10.12098/j.issn.1674-8247.2025.02.006]
点击复制

斜井交叉隧道施工阶段CO分布规律以及通风优化研究()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
期数:
2025年02期
页码:
39-45
栏目:
理论探索
出版日期:
2025-04-20

文章信息/Info

Title:
Study on CO Distribution Pattern and Ventilation Optimization during the Construction Phase of Inclined Shaft Intersecting Tunnel
文章编号:
1674-8247(2025)02-0039-07
作者:
韦宜霏1 崔光耀1 党双宝2 侯文学2
(1.北方工业大学, 北京 100144; 2.中铁十四局集团第五工程有限公司, 山东济宁 272100)
Author(s):
WEI Yifei1 CUI Guangyao1 DANG Shuangbao2 HOU Wenxue2
(1. North China University of Technology, Beijing 100144,China; 2.The Fifth Engineering Co., Ltd.of China Railway Fourteenth Bureau Group Co.,Ltd., Jining 272100,China)
关键词:
隧道工程 施工通风 CO分布 数值模拟 单双工作面
Keywords:
tunnel engineering construction ventilation CO distribution numerical simulation single and double working face
分类号:
U453.5
DOI:
10.12098/j.issn.1674-8247.2025.02.006
文献标志码:
A
摘要:
为降低斜井交叉隧道爆破产生的CO气体对施工的影响,采用计算流体力学探究隧道内风流流场分布和CO气体扩散特征,以三维RNG k-ε湍流非稳态模型和组分运输方程为基础,以风管送风风速、单双工作面通风为影响因素,模拟不同工况下的CO运移特性和浓度分布规律。结果表明,(1)隧道掌子面与出风口沿程方向,以风筒口为分界线,隧道断面的平均风速在掌子面附近达到峰值,随后呈现减小趋势,在风筒口后方风速趋于稳定;(2)单工作面通风时,提升送风风速对CO气体排出有较为显著的效果;(3)双工作面通风时,在斜井出风口两束气流交汇处,容易形成2个明显的涡流。研究成果可为类似隧道工程的施工通风提供参考。
Abstract:
To mitigate the impact of CO gas generated by blasting in inclined shaft intersecting tunnels on construction activities, computational fluid dynamics method was employed to investigate the distribution of the airflow field and the diffusion characteristics of CO gas in the tunnel. Based on the three-dimensional RNG k-ε turbulence unsteady model and the component transport equation, the study simulated the transport properties and concentration distribution patterns of CO under different working conditions, considering such factors as air supply velocity through ventilation ducts and ventilation configurations with single or double working faces.The results show that:(1)Along the direction from the tunnel face to the outlet, with the ventilation duct outlet as the boundary, the average wind speed within the tunnel cross-section peaks near the tunnel face and subsequently decreases, and stabilizes behind the ventilation duct outlet.(2)When ventilation is provided to a single working face, increasing the air supply velocity has a significant effect on the expulsion of CO gas.(3)During ventilation with double working faces, two distinct vortices tend to form at the intersection of the two airflows at the outlet of the inclined shaft. The findings of this study can provide valuable guidance for ventilation in similar tunnel construction projects.

参考文献/References:

[1] 王阅章. 基于正交试验的瓦斯隧道施工通风方案优化研究[J]. 公路, 2021, 66(12): 395-403.
WANG Yuezhang. Research on Ventilation Optimization of Gas Tunnel Construction Based on Orthogonal Test[J]. Highway, 2021, 66(12): 395-403.
[2] FENG Xue, JIANG Zhongan, ZHANG Guoliang, et al. Study on CO Diffusion Law and Concentration Distribution Function under Ventilation after Blasting in High-altitude Tunnel[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 220: 104871.
[3] 雷帅, 方勇, 刘静, 等. 南大梁高速公路华蓥山隧道施工通风优化研究[J]. 现代隧道技术, 2019, 56(2): 194-200.
LEI Shuai, FANG Yong, LIU Jing, et al. Research of Construction Ventilation Optimization for Huayingshan Tunnel on Nanchong-Dazu-Liangping Expressway[J]. Modern Tunnelling Technology, 2019, 56(2): 194-200.
[4] 廖贤鑫, 蒋仲安, 牛伟, 等. 采场爆破粉尘运移规律的Fluent数值模拟[J]. 安全与环境学报, 2012, 12(6): 43-46.
LIAO Xianxin, JIANG Zhongan, NIU Wei, et al. Numerical Simulations of Blasting Dust Migration with the Use of Fluent in Stope[J]. Journal of Safety and Environment, 2012, 12(6): 43-46.
[5] 姬昌荣,张建超,万鹏.铁路隧道及隧道群火灾防治研究[J].高速铁路技术, 2023, 14(1): 20-25,31.
JI Changrong, ZHANG Jianchao, WANG Peng. Research on Fire Prevention and Control of Railway Tunnels and Tunnel Groups [J]. High Speed Railway Technology, 2023, 14(1): 20-25, 31.
[6] 刘庆宽, 郑肖楠, 崔会敏, 等. 高海拔高地温铁路隧道施工通风CO扩散特性分析[J]. 地下空间与工程学报, 2022, 18(S2): 1015-1022, 1029.
LIU Qingkuan, ZHENG Xiaonan, CUI Huimin, et al. Analysis on CO Diffusion Characteristics of Ventilation in Railway Tunnel Construction with High Sea Elevation and High Ground Temperature[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(S2): 1015-1022, 1029.
[7] 朱红青, 沈静, 胡瑞丽. 井下巷道内矿用防爆车CO排放分布规律数值模拟[J]. 煤矿安全, 2015, 46(12): 229-232.
ZHU Hongqing, SHEN Jing, HU Ruili. Numerical Simulation of CO Emission by Flame-proof Vehicle in Underground Mine Tunnel[J]. Safety in Coal Mines, 2015, 46(12): 229-232.
[8] 刘杰, 周皓文, 王婉青, 等. 某高原螺旋施工隧道CO分布及扩散特征[J]. 中国安全科学学报, 2022, 32(12): 79-87.
LIU Jie, ZHOU Haowen, WANG Wanqing, et al. Study on CO Distribution and Diffusion in Spiral Construction Tunnel on Plateau[J]. China Safety Science Journal, 2022, 32(12): 79-87.
[9] 曹正卯, 杨其新, 郭春. 高海拔地区铁路隧道施工期有害气体运移特性[J]. 中南大学学报(自然科学版), 2016, 47(11): 3948-3957.
CAO Zhengmao, YANG Qixin, GUO Chun. Migration Characteristics of Poisonous Gas during Construction Stage in Railway Tunnels at High Altitude Areas[J]. Journal of Central South University(Science and Technology), 2016, 47(11): 3948-3957.
[10] BOGDAN S, BIRGMAJER B, KOVACIC Z. Model Predictive and Fuzzy Control of a Road Tunnel Ventilation System[J]. Transportation Research Part C: Emerging Technologies, 2008, 16(5):574-592.
[11] CHOW W K, CHAN M Y. Field Measurement on Transient Carbon Monoxide Levels in Vehicular Tunnels[J]. Building and Environment, 2003, 38(2): 227-236.
[12] 张夏临, 冯涛, 孟少伟. 川西高原某隧道幔源气逸出机理及防控研究[J]. 高速铁路技术, 2024, 15(4): 106-110.
ZHANG Xialing, FENG Tao, MENG Shaowei. Research on the Mechanism of Mantle-derived Gas Emission and Prevention & Control Measures in a Tunnel in the Western Sichuan Plateau [J]. High Speed Railway Technology, 2024,15(4):106-110.

相似文献/References:

[1]陈秦泷,王庆建,崔光耀.玉磨铁路隧道整体配套移动栈桥仰拱施工技术研究[J].高速铁路技术,2022,13(05):107.[doi:10.12098/j.issn.1674-8247.2022.05.021]
 CHEN Qinlong,WANG Qingjian,CUI Guangyao.Study on Construction Technology of Inverted Arch of Yuxi-Mohan Railway Tunnel by Using the Integrated Supporting Movable Trestle[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(02):107.[doi:10.12098/j.issn.1674-8247.2022.05.021]
[2]崔光耀,陈秦泷,王明胜,等.片理化玄武岩隧道大变形影响因素分析[J].高速铁路技术,2022,13(06):12.[doi:10.12098/j.issn.1674-8247.2022.06.003 ]
 CUI Guangyao,CHEN Qinlong,WANG Mingsheng,et al.On Impact Factors of Large Deformation of Tunnels in Schistose Basalt[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(02):12.[doi:10.12098/j.issn.1674-8247.2022.06.003 ]
[3]刘朝钦.软弱地层超大矩形顶管盾构隧道开挖面稳定性研究[J].高速铁路技术,2022,13(06):36.[doi:10.12098/j.issn.1674-8247.2022.06.007 ]
 LIU Chaoqin.Study on Stability of Excavation Face of Super-large Rectangular Pipe-jacking Shield Tunnel in Soft Ground[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(02):36.[doi:10.12098/j.issn.1674-8247.2022.06.007 ]
[4]叶 堃,丁浩江,岳志勤.玉京山隧道巨型溶洞地质特征与稳定性评价[J].高速铁路技术,2023,14(01):81.[doi:10.12098/j.issn.1674-8247.2023.01.015]
 YE Kun,DING Haojiang,YUE Zhiqin.Geological Characteristics and Stability Evaluation of Giant Karst Cave Affecting Yujingshan Tunnel[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(02):81.[doi:10.12098/j.issn.1674-8247.2023.01.015]
[5]宿春亮.锦屏水电站辅助洞岩爆特征及防控技术研究[J].高速铁路技术,2023,14(02):75.[doi:10.12098/j.issn.1674-8247.2023.02.015]
 SU Chunliang.A Study on Rock Burst Characteristics and Prevention and Control Technology of Auxiliary Tunnel of Jinping Hydropower Station[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(02):75.[doi:10.12098/j.issn.1674-8247.2023.02.015]
[6]崔光耀,韩驰,王明胜,等.高地应力软岩隧道大变形机制及控制技术研究综述[J].高速铁路技术,2023,14(04):13.[doi:10.12098/j.issn.1674-8247.2023.04.003]
 CUI Guangyao,HAN Chi,WANG Mingsheng,et al.Review of Mechanism of Large Deformation in Soft Rock Tunnels with High Geo-stress and Its Control Techniques[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(02):13.[doi:10.12098/j.issn.1674-8247.2023.04.003]
[7]赵英伟.高烈度地震区倾斜隧道洞口段抗减震技术研究[J].高速铁路技术,2024,15(02):32.[doi:10.12098/j.issn.1674-8247.2024.02.006]
 ZHAO Yingwei.Study on Anti-seismic and Vibration Reduction Techniques for Inclined Tunnel Portal Sections in High Seismic Intensity Zones[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(02):32.[doi:10.12098/j.issn.1674-8247.2024.02.006]
[8]李准,吴炜,马文景,等.基于隧道三台阶铣挖定额施工组织模型的数据误差处理研究[J].高速铁路技术,2024,15(04):8.[doi:10.12098/j.issn.1674-8247.2024.04.002]
 LI Zhun,WU Wei,MA Wenjing,et al.Study on Data Error Handling for Construction Organization Model Based on the Quota of Three-bench Cutting Excavation Method for Tunnels[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(02):8.[doi:10.12098/j.issn.1674-8247.2024.04.002]
[9]何子阳,庄永香,郭艳军,等.强震区浅埋偏压隧道洞口段减震层减震效果分析[J].高速铁路技术,2024,15(04):56.[doi:10.12098/j.issn.1674-8247.2024.04.011]
 HE Ziyang,ZHUANG Yongxiang,GUO Yanjun,et al.Analysis on the Seismic Response Reduction of Shock Absorption Layer in the Shallow and Unsymmetrical Pressure Section of Tunnel Portal in Strong Earthquake Area[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(02):56.[doi:10.12098/j.issn.1674-8247.2024.04.011]

备注/Memo

备注/Memo:
收稿日期:2023-06-26
作者简介:韦宜霏(1999-),女,硕士研究生。
基金项目:国家自然科学基金项目(52178378)
更新日期/Last Update: 2025-04-20