[1]王政松.水平岩层隧道底鼓整治及结构参数优化研究[J].高速铁路技术,2025,(02):87-93.[doi:10.12098/j.issn.1674-8247.2025.02.014]
 WANG Zhengsong.Study on Remediation and Structural Parameter Optimization of Tunnel Floor Heave in Horizontal Rock Strata[J].HIGH SPEED RAILWAY TECHNOLOGY,2025,(02):87-93.[doi:10.12098/j.issn.1674-8247.2025.02.014]
点击复制

水平岩层隧道底鼓整治及结构参数优化研究()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
期数:
2025年02期
页码:
87-93
栏目:
研究创新
出版日期:
2025-04-20

文章信息/Info

Title:
Study on Remediation and Structural Parameter Optimization of Tunnel Floor Heave in Horizontal Rock Strata
文章编号:
1674-8247(2025)02-0087-07
作者:
王政松
( 中铁二十三局集团有限公司, 成都 610072)
Author(s):
WANG Zhengsong
(China Railway 23rd Bureau Group Co., Ltd., Chengdu 610072, China)
关键词:
高地应力 水平岩层 隧道底鼓 仰拱曲率 参数优化
Keywords:
high geo-stress horizontal rock stratum tunnel floor heave invert curvature parameter optimization
分类号:
U457+.2
DOI:
10.12098/j.issn.1674-8247.2025.02.014
文献标志码:
A
摘要:
针对某铁路隧道施工期间出现的仰拱隆起开裂问题,开展了现场地应力测试,揭示了仰拱隆起段的地应力主要以垂直于隧道轴向的水平应力为主,地应力为15.24 ~ 21.69 MPa,强度应力比为4.06 ~ 4.30,为高地应力状态。结合地层结构模型,研究了高地应力水平岩层环境下隧道仰拱半径及支护结构参数对仰拱结构受力及变形的影响。综合支护结构安全性和施工便捷性,提出了仰拱隆起段整治方案,确定了相匹配的仰拱曲率及仰拱结构参数; 通过现场力学特性试验,结合后期长期监测数据,进一步验证了仰拱支护优化参数的合理性。
Abstract:
In response to the invert heave and cracking encountered during the construction ofa railway tunnel,in situ geo-stress tests were conducted, and the results revealed that the principal geo-stresses in the heave zone predominantly consist of horizontal stresses perpendicular to the tunnel axis, with magnitudes ranging from 15.24 MPa to 21.69 MPa and a strength-to-stress ratio of 4.06 to 4.30, indicative of a high geo-stress environment. Combining this with a stratum structure model, the influence of tunnel invert radius and support structure parameters on the invert's structural loading and deformation was investigated under conditions of high geo-stress horizontal rock strata. Considering both the safety of the support structure and the convenience of construction, a remediation scheme for the invert heave section was proposed, a compatible invert curvature and associated invert structural parameters were determined. The rationality of the optimized invert support parameters was further substantiated through field mechanical property tests and subsequent long-term monitoring data.

参考文献/References:

[1] 崔光耀, 韩驰, 王明胜, 等. 高地应力软岩隧道大变形机制及控制技术研究综述[J]. 高速铁路技术, 2023, 14(4): 13-18.
CUI Guangyao, HAN Chi,WANG Mingsheng, et al. Review of Mechanism of Large Deformation in Soft Rock Tunnels with High Geo-stress and Its Control Techniques[J]. High Speed Railway Technology, 2023, 14(4): 13-18.
[2] 万正, 张学民, 冯涵, 等. 富水煤系地层隧道仰拱隆起原因分析及控制研究[J]. 现代隧道技术, 2021, 58(3): 216 - 222.
WAN Zheng, ZHANG Xuemin, FENG Han, et al. On the Causes and the Control Measures of the Tunnel Inverted Arch Heaving in Water-rich Coal Measure Strata[J]. Modern Tunnelling Technology, 2021, 58(3): 216-222.
[3] 高震, 马伟斌, 吴旭, 等. 考虑围岩强度劣化的隧道仰拱隆起变形分析[J]. 土木工程学报, 2020, 53(S1): 342-347.
GAO Zhen, MA Weibin, WU Xu, et al. Deformation Analysis of Tunnel Inverted Arch Uplift Considering the Deterioration of Surrounding Rock Strength[J]. China Civil Engineering Journal, 2020, 53(S1): 342-347.
[4] 刘勇, 伏坤, 王珣, 等. 某铁路隧道隆起病害整治及自动监测成果分析[J]. 铁道标准设计, 2020, 64(6): 112-116, 125.
LIU Yong, FU Kun, WANG Xun, et al. Renovation of the Uplift of a Railway Tunnel Invert and Analysis of Automatic Monitoring Results[J]. Railway Standard Design, 2020, 64(6): 112-116, 125.
[5] 陈洋宏, 万晓燕, 刘志强. 高地应力缓倾软硬互层岩体中隧道底鼓影响因素模拟分析[J]. 铁道建筑, 2020, 60(2): 65-69.
CHEN Yanghong, WAN Xiaoyan, LIU Zhiqiang. Simulation Analysis of Influencing Factors of Tunnel Gloor Heave in the Gently Inclined Soft Hard Interbedded Rock under High Geostress[J]. Railway Engineering, 2020, 60(2): 65-69.
[6] 陈贵红, 巩安. 紫坪铺隧道隧底隆起处治探讨[J]. 公路, 2014, 59(1): 228-232.
CHEN Guihong, GONG An. Discussion on Treatment of Zipingpu Tunnel Uplift[J]. Highway, 2014, 59(1): 228-232.
[7] 肖小文, 王立川, 阳军生, 等. 高地应力区缓倾互层岩体无砟轨道隧道底部隆起的成因分析及整治方案[J]. 中国铁道科学, 2016, 37(1): 78-84.
XIAO Xiaowen, WANG Lichuan, YANG Junsheng, et al. Cause Analysis and Treatment Scheme for Bottom Heave of Ballastless Track Tunnel in Nearly Horizontally Interbedded Rock Mass with High Geostress[J]. China Railway Science, 2016, 37(1): 78-84.
[8] 李尧, 付兵先, 张千里, 等. 既有重载铁路隧道底鼓原因及处置措施[J]. 铁道建筑, 2016, 56(12): 53-56.
LI Yao, FU Bingxian, ZHANG Qianli, et al. Base Heaving Cause and Its Treatment Measures for Existing Heavy Haul Railway Tunnel[J]. Railway Engineering, 2016, 56(12): 53-56.
[9] 杜明庆, 张顶立, 王旭春, 等. 大断面隧道仰拱底鼓破坏模式[J]. 中国公路学报, 2018, 31(10): 292-301, 358.
DU Mingqing, ZHANG Dingli, WANG Xuchun, et al. Failure Modes of Floor Heave in Large Section Tunnel Invert[J]. China Journal of Highway and Transport, 2018, 31(10): 292-301, 358.
[10] 王琳, 杨林, 袁青, 等. 浅埋富水隧道施工大变形原因分析与应对措施[J]. 人民长江, 2022, 53(5): 162-167.
WANG Lin, YANG Lin, YUAN Qing, et al. Cause Analysis and Countermeasures of Large Deformation Induced by Shallow-buried Tunnel Construction under Water-rich Condition[J]. Yangtze River, 2022, 53(5): 162-167.
[11] 孙韶峰, 袁竹, 赵万强. 高地应力区砂泥岩地层隧道开裂原因分析及处理原则[J]. 现代隧道技术, 2013, 50(4): 170-175.
SUN Shaofeng, YUAN Zhu, ZHAO Wanqiang. Cause Analysis and Treatment Principles for Tunnel Lining Cracking in Sandy Mudstone with High Geostress[J]. Modern Tunnelling Technology, 2013, 50(4): 170-175.
[12] 李登峰, 谢锦鸿. 隧道底鼓的变形研究及处治措施[J]. 高速铁路技术, 2022, 13(5): 86-90.
LI Dengfeng, XIE Jinhong. Deformation Study and Treatment Measures of Tunnel Floor Heaves[J]. High Speed Railway Technology, 2022, 13(5): 86-90.
[13] 肖广智, 薛斌. 向莆铁路隧道道床积水、轨道隆起病害整治技术[J]. 现代隧道技术, 2015, 52(3): 200-204.
XIAO Guangzhi, XUE Bin. Treatment of Bed Waterlogging and Track Heaving in Tunnels on the Xiangtang-Putian Railway[J]. Modern Tunnelling Technology, 2015, 52(3): 200-204.
[14] 孔恒, 王梦恕, 张德华. 隧道底板隆起的成因、分类与控制[J]. 中国安全科学学报, 2003, 13(1): 30-33.
KONG Heng, WANG Mengshu, ZHANG Dehua. Causation and Classification of Tunnel Floor Heave and Its Control[J]. China Safety Science Journal, 2003, 13(1): 30-33.
[15] 汪洋, 唐雄俊, 谭显坤, 等. 云岭隧道底鼓机理分析[J]. 岩土力学, 2010, 31(8): 2530-2534.
WANG Yang, TANG Xiongjun, TAN Xiankun, et al. Mechanism Analysis of Floor Heave in Yunling Tunnel[J]. Rock and Soil Mechanics, 2010, 31(8): 2530-2534.
[16] 王立川, 肖小文, 林辉. 某铁路隧道底部结构隆起病害成因分析及治理对策探讨[J]. 隧道建设, 2014, 34(9): 823-836.
WANG Lichuan, XIAO Xiaowen, LIN Hui. Analysis on Causes for and Renovation of Floor Structure of a High-speed Railway Tunnel Located in Slightly-dipping Interbedded Rock Mass[J]. Tunnel Construction, 2014, 34(9): 823-836.
[17] 马有良. 复杂地应力环境下隧道底鼓处治技术研究[J]. 高速铁路技术, 2024, 15(3): 68-72, 80.
MA Youliang. Study on Treatment Techniques for Tunnel Floor Heave in Complex Crustal Stress Environments[J].High Speed Railway Technology, 2024, 15(3): 68-72, 80.
[18] GB/T 50218-2014工程岩体分级标准[S].
GB/T 50218-2014 Standard for Engineering Classification of Rock Mass[S].
[19] JTG 3370.1-2018公路隧道设计规范 第一册 土建工程 [S].
JTG 3370.1-2018 Specifications for Design of Highway Tunnels Volume 1 Civil Engineering [S].

相似文献/References:

[1]宿春亮.锦屏水电站辅助洞岩爆特征及防控技术研究[J].高速铁路技术,2023,14(02):75.[doi:10.12098/j.issn.1674-8247.2023.02.015]
 SU Chunliang.A Study on Rock Burst Characteristics and Prevention and Control Technology of Auxiliary Tunnel of Jinping Hydropower Station[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(02):75.[doi:10.12098/j.issn.1674-8247.2023.02.015]
[2]崔光耀,韩驰,王明胜,等.高地应力软岩隧道大变形机制及控制技术研究综述[J].高速铁路技术,2023,14(04):13.[doi:10.12098/j.issn.1674-8247.2023.04.003]
 CUI Guangyao,HAN Chi,WANG Mingsheng,et al.Review of Mechanism of Large Deformation in Soft Rock Tunnels with High Geo-stress and Its Control Techniques[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(02):13.[doi:10.12098/j.issn.1674-8247.2023.04.003]

备注/Memo

备注/Memo:
收稿日期:2023-04-24
作者简介:王政松(1973-),男,高级工程师。
更新日期/Last Update: 2025-04-20