[1]王瑶,和振兴.轨道板侧裂纹对车辆-轨道动力性能的影响研究[J].高速铁路技术,2025,(01):55-62.[doi:10.12098/j.issn.1674-8247.2025.01.009]
 WANG Yao HE Zhenxing.Study on the Influence of Side Cracks in Track Slabs on Vehicle-track Dynamic Performance[J].HIGH SPEED RAILWAY TECHNOLOGY,2025,(01):55-62.[doi:10.12098/j.issn.1674-8247.2025.01.009]
点击复制

轨道板侧裂纹对车辆-轨道动力性能的影响研究()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
期数:
2025年01期
页码:
55-62
栏目:
研究创新
出版日期:
2025-02-20

文章信息/Info

Title:
Study on the Influence of Side Cracks in Track Slabs on Vehicle-track Dynamic Performance
文章编号:
1674-8247(2025)01-0055-08
作者:
王瑶1和振兴2
(1.中铁二院工程集团有限责任公司, 成都 610031; 2.兰州交通大学, 兰州 730070)
Author(s):
WANG Yao1 HE Zhenxing2
(1.China Railway Eryuan Engineering Group Co., Ltd., Chengdu 610031,China; 2.Lanzhou Jiaotong University, Lanzhou 730070,China)
关键词:
高速铁路 无砟轨道 侧裂纹 车辆-轨道耦合动力学 联合仿真技术
Keywords:
high speed railway ballastless track side cracks vehicle-track coupled dynamics co-simulation technology
分类号:
U213.2+44; U238
DOI:
10.12098/j.issn.1674-8247.2025.01.009
文献标志码:
A
摘要:
板式无砟轨道在我国高速铁路中得到了广泛应用,在长期列车动荷载与环境等因素共同作用下,轨道板结构不可避免地发生疲劳、结构裂化等损伤情境,从而影响其使用寿命和耐久性,增大养护维修成本。为研究高速列车荷载作用下,具有侧裂纹的轨道板对车辆-轨道系统动力学性能的影响,本文基于MATLAB-ABAQUS联合仿真技术建立了车辆-轨道空间耦合动力学模型。模型中包含:考虑为多刚体系统的列车模型,采用无限长点支撑Euler梁模拟的钢轨模型,和考虑面内、面外柔性振动的含侧裂纹的轨道板模型。本文通过对比分析有无侧裂纹的轨道板对整个系统动态响应的差异,探讨了不同运行速度对裂纹板动力性能的影响。研究结果表明:侧裂纹的存在会增大轨道板裂纹附近垂向和横向的动力响应,尤其是对其横向加速度影响最显著,最大分别增大16.65%和90.60%; 列车速度与轨道板振动密切相关,列车速度的提高将进一步加剧轨道板裂纹处的振动,在长期列车动荷载作用下增加了裂纹进一步扩展的风险,给轨道板结构稳定性带来挑战。本研究可为高速铁路轨道的养护维修提供理论依据。
Abstract:
The slab ballastless track has been widely used in China's high-speed railway. Under the combined action of long-term train dynamic load and environmental factors, the track slab structure will inevitably suffer from fatigue, structural cracking and other damage scenarios, which will affect its service life and durability and increase maintenance costs. To study the influence of track slab with side cracks on the dynamic performance of vehicle-track system under the load of high-speed train, this paper established a vehicle-track spatially coupled dynamics model based on MATLAB-ABAQUS co-simulation technology. The model contains: a train model considered as a multi-rigid-body system, a rail model simulated with an infinitely long point-supported Euler beam, and a side-cracked slab model considering its in-plane and out-of-plane flexible vibrations. The differences in the dynamic responses of track slabs with or withoutside cracks to the whole system were compared and analyzed, and the effects of different operating speeds on the dynamic performance of the cracked slabs were discussed. The results indicate that: the existence of side cracks increases the vertical and lateral dynamic responses near the cracks of the track slab, especially the most drastic effect on its lateral acceleration,which increases by a maximum of 16.65% and 90.60%. Train speed has a close relationship with track slab vibration, and a higher operation speed will further aggravate the vibration at the cracks of the track slab, posing a risk of further crack expansion under the long-term train dynamic loads and challenging the stability of the track slab structure itself. This study will provide a theoretical basis for the maintenance and repair of high-speed railroad tracks.

参考文献/References:

[1] 向芬, 方宜, 殷明旻, 等. 某铁路无砟轨道裂缝成因分析和修补准则研究[J]. 高速铁路技术, 2024, 15(6): 40-43.
XIANG Fen, FANG Yi, YIN Mingmin, et al. Research on Crack Formation Analysis and Repair Criteria for Railway Ballastless Tracks[J]. High Speed Railway Technology, 2024, 15(6): 40-43.
[2] 朱胜阳, 蔡成标. 含裂纹的双块式无砟轨道道床垂向振动特性分析[J]. 铁道学报, 2012, 34(8): 82-86.
ZHU Shengyang, CAI Chengbiao. Analysis on Vertical Vibration Characteristics of Double-block Ballastless Roadbed with Cracks[J]. Journal of the China Railway Society, 2012, 34(8): 82-86.
[3] 赵春发, 刘建超, 毛海和, 等. 温度梯度荷载作用下CRTS II型板式无砟轨道砂浆层界面损伤分析[J]. 中国科学: 技术科学, 2018, 48(1): 79-86.
ZHAO Chunfa, LIU Jianchao, MAO Haihe, et al. Interface Damage Analysis of CA Mortar Layer of the CRTS Ⅱ Ballastless Slab Track under Temperature Gradient Loads[J]. Scientia Sinica(Technologica), 2018, 48(1): 79-86.
[4] CHO Y K, KIM S M. Experimental Analysis of Crack Width Movement of Continuously Reinforced Concrete Railway Track[J]. Engineering Structures, 2019, 194: 262-273.
[5] LUO Jun, ZHU Shengyang, ZHAI Wanming. An Efficient Model for Vehicle-slab Track Coupled Dynamic Analysis Considering Multiple Slab Cracks[J]. Construction and Building Materials, 2019, 215: 557-568.
[6] CAO Shihao, YANG Rongshan, SU Chengguang, et al. Damage Mechanism of Slab Track under the Coupling Effects of Train Load and Water[J]. Engineering Fracture Mechanics, 2016, 163: 160-175.
[7] ZHANG Jiawei, CAI Chengbiao, ZHU Shengyang, et al. Experimental Investigation on Dynamic Performance Evolution of Double-Block Ballastless Track under High-cycle Train Loads[J]. Engineering Structures, 2022, 254: 113872.
[8] 刘钰, 赵国堂, 曹毅杰, 等. 整体温升作用下纵连板式无砟轨道宽窄接缝损伤演化研究[J]. 北京交通大学学报, 2021, 45(4): 19-27.
LIU Yu, ZHAO Guotang, CAO Yijie, et al. Study on Damage Evolution of Wide and Narrow Joints in Longitudinally Connected Slab Ballastless Track under Load of Overall Temperature Rise[J]. Journal of Beijing Jiaotong University, 2021, 45(4): 19-27.
[9] 罗强, 谢宏伟, 李安洪, 等. 无砟轨道底座板离缝对路桥过渡段动力学性能影响分析[J]. 高速铁路技术, 2021, 12(2): 33-38, 49.
LUO Qiang, XIE Hongwei, LI Anhong, et al. Analysis on the Impact of Ballastless Track Base Slab Disjoint on the Dynamic Performance of Subgrade-bridge Transition Section[J]. High Speed Railway Technology, 2021, 12(2): 33-38, 49.
[10] 韦强文, 朱胜阳, 罗俊. 无砟轨道层间离缝对时速400 km高速铁路车辆-轨道系统动力特性影响[J]. 铁道标准设计, 2023, 67(3): 74-79.
WEI Qiangwen, ZHU Shengyang, LUO Jun. Study on the Influence of Ballastless Tracks Interface Debonding on the Dynamic Properties of Vehicle-track System in 400 km/h High-speed Railways[J]. Railway Standard Design, 2023, 67(3): 74-79.
[11] 赵国堂, 刘钰. CRTSⅡ型板式无砟轨道结构层间离缝机理研究[J]. 铁道学报, 2020, 42(7): 117-126.
ZHAO Guotang, LIU Yu. Mechanism Analysis of Delamination of CRTSⅡ Slab Ballastless Track Structure[J]. Journal of the China Railway Society, 2020, 42(7): 117-126.
[12] 陈宪麦, 王日吉, 徐磊, 等. 不同累积概率不平顺状态下轨道板离缝损伤研究[J]. 铁道科学与工程学报, 2023, 20(5): 1666-1676.
CHEN Xianmai, WANG Riji, XU Lei, et al. Damage of Track Slab under Different Cumulative Probability Irregularity[J]. Journal of Railway Science and Engineering, 2023, 20(5): 1666-1676.
[13] 王军, 卢朝辉, 张玄一, 等. CRTSⅡ型轨道板/CA砂浆界面内聚力模型研究[J]. 工程力学, 2022, 39(9): 72-80, 109.
WANG Jun, LU Zhaohui, ZHANG Xuanyi, et al. Research on Cohesive Zone Model of the Interface between CRTS Ⅱ Track Slab and CA Mortar[J]. Engineering Mechanics, 2022, 39(9): 72-80, 109.
[14] 林士财. 温度梯度作用下既有离缝无砟轨道结构层间损伤扩展及变形分析[J]. 铁道标准设计, 2022, 66(2): 29-35.
LIN Shicai. Analysis of Interlayer Damage Propagation and Deformation of Existing Delamination Ballastless Track Structure under Temperature Gradient[J]. Railway Standard Design, 2022, 66(2): 29-35.
[15] 赵国堂, 赵磊, 杨国涛. 列车荷载与温度梯度共同作用下单元轨道板层间局部支承效应研究[J]. 中国铁道科学, 2021, 42(6): 1-7.
ZHAO Guotang, ZHAO Lei, YANG Guotao. Study on the Local Support Effect between Layers of Unit Track Slab under the Combined Action of Vehicle Load and Temperature Gradient[J]. China Railway Science, 2021, 42(6): 1-7.
[16] 徐桂弘, 杨荣山, 刘学毅. 轨道结构裂纹在水与高频列车荷载作用下瞬态耦合分析[J]. 铁道标准设计, 2013, 57(3): 5-8, 11.
XU Guihong, YANG Rongshan, LIU Xueyi. Transient State Coupling Analysis on Track Structure Cracks under the Actions of Water and High Frequency Train Load[J]. Railway Standard Design, 2013, 57(3): 5-8, 11.
[17] 翟婉明, 姚力, 孙立, 等. 基于车辆-轨道耦合动力学的400 km/h高速铁路线路平面参数设计研究[J]. 高速铁路技术, 2021, 12(2): 1-10, 16.
ZHAI Wanming, YAO Li, SUN Li, et al. Research on Route Plan Design Parameters of 400 km/h High-speed Railway Based on Vehicle-track Coupling Dynamics[J]. High Speed Railway Technology, 2021, 12(2): 1-10, 16.
[18] ZHAI Zhihao, ZHU Shengyang, YANG Yun, et al. Dynamics Analysis of Train-track-bridge Coupled System Considering Spatial Flexibility of High Piers and System Longitudinal Vibrations[J]. Vehicle System Dynamics, 2023, 61(10): 2613-2637.
[19] 翟婉明. 车辆-轨道耦合动力学 [M]. 4版. 北京: 科学出版社, 2015.
ZHAI Wanming. Vehicle-track Coupled Dynamics[M]. 4th ed. Beijing: Science Press, 2015.

相似文献/References:

[1]王 旭.长大干线高速铁路自动化沉降监测系统研究[J].高速铁路技术,2017,8(06):68.[doi:10.12098/j.issn.1674-8247.2017.06.014]
 WANG Xu.Research of Automatic Settlement Monitoring System for Long Trunk High Speed Railway[J].HIGH SPEED RAILWAY TECHNOLOGY,2017,8(01):68.[doi:10.12098/j.issn.1674-8247.2017.06.014]
[2]陈兴海,王朋,于翠翠.鲁南某高速铁路岩溶塌陷风险评估及防治对策[J].高速铁路技术,2022,13(05):79.[doi:10.12098/j.issn.1674-8247.2022.05.016]
 CHEN Xinghai,WANG Peng,YU Cuicui.Risk Assessment and Countermeasures for Karst Collapse of a Highspeed Railway in Southern Shandong[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(01):79.[doi:10.12098/j.issn.1674-8247.2022.05.016]
[3]林奎.成自铁路引入天府机场线路方案比选回顾[J].高速铁路技术,2022,13(05):91.[doi:10.12098/j.issn.1674-8247.2022.05.018]
 LIN Kui.Review of Comparison and Selection of Route Plans for the Connection of the Chengdu-Zigong High-speed Railway to Tianfu Airport[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(01):91.[doi:10.12098/j.issn.1674-8247.2022.05.018]
[4]周宏,宋元胜.高速铁路引入铁路枢纽线路选线研究[J].高速铁路技术,2022,13(05):96.[doi:10.12098/j.issn.1674-8247.2022.05.019]
 ZHOU Hong,SONG Yuansheng.Study on Route Selection for Introducing High-speed Railways into Railway Hubs[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(01):96.[doi:10.12098/j.issn.1674-8247.2022.05.019]
[5]陈 浩.基于动力分析的高速铁路钢轨磨耗预测方法研究[J].高速铁路技术,2022,13(06):17.[doi:10.12098/j.issn.1674-8247.2022.06.004 ]
 CHEN Hao.Study on Prediction Method of Rail Wear of High-speed Railway Based on Dynamic Analysis[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(01):17.[doi:10.12098/j.issn.1674-8247.2022.06.004 ]
[6]董月龙.金建高速铁路大中河流水文计算分析[J].高速铁路技术,2022,13(06):79.[doi:10.12098/j.issn.1674-8247.2022.06.015 ]
 DONG Yuelong.Hydrological Calculation and Analysis of Large and Medium Rivers along Jinhua-Jiande High-speed Railway[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(01):79.[doi:10.12098/j.issn.1674-8247.2022.06.015 ]
[7]王佩雷.复杂艰险山区高速铁路建设四电接口管理技术研究[J].高速铁路技术,2023,14(01):38.[doi:10.12098/j.issn.1674-8247.2023.01.007]
 WANG Peilei.A Study on Interface Management Technology of Communication, Signal,Electrical,and Electrification Systems for High-speed Railway Construction in Challenging Mountain Areas[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(01):38.[doi:10.12098/j.issn.1674-8247.2023.01.007]
[8]戴龙钦,余少华,蔡康.合福高速铁路闽赣段防洪对策分析[J].高速铁路技术,2023,14(01):91.[doi:10.12098/j.issn.1674-8247.2023.01.017]
 DAI Longqin,YU Shaohua,CAI Kang.Analysis of Flood Control Measures for Fujian-Jiangxi Section of Hefei-Fuzhou High-speed Railway[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(01):91.[doi:10.12098/j.issn.1674-8247.2023.01.017]
[9]尹航.沪渝蓉高速铁路(宜涪段)马鹿箐隧道选线研究[J].高速铁路技术,2023,14(01):106.[doi:10.12098/j.issn.1674-8247.2023.01.020]
 YIN Hang.A Study on Route Selection of Maluqing Tunnel of Shanghai-Chongqing-Chengdu High-speed Railway(Yichang-Fuling Section)[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(01):106.[doi:10.12098/j.issn.1674-8247.2023.01.020]
[10]任俊桦.基于类比分析的高速铁路和城际铁路运量预测研究[J].高速铁路技术,2023,14(01):54.[doi:10.12098/j.issn.1674-8247.2023.01.010]
 REN Junhua.A Study on Forecast of Traffic Volume for High-speed Railway and Intercity Railway Based on Analog Analysis[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(01):54.[doi:10.12098/j.issn.1674-8247.2023.01.010]
[11]付 娜,王闵文,陈 果,等.高速铁路无砟轨道振动相关问题及频域研究方法综述[J].高速铁路技术,2024,15(05):30.[doi:10.12098/j.issn.1674-8247.2024.05.005]
 FU Na,WANG Minwen,CHEN Guo,et al.Review on Problems related to Vibration Effects of Ballastless Track and Analyzing Method in Frequency Domain[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(01):30.[doi:10.12098/j.issn.1674-8247.2024.05.005]
[12]陈志远,华正兴.高速铁路无砟轨道扣件自动化安装车研究[J].高速铁路技术,2024,15(05):119.[doi:10.12098/j.issn.1674-8247.2024.05.020]
 CHEN Zhiyuan,HUA Zhengxing.Study on Automated Installation Vehicle for Fastener Systems in Ballastless High-speed Railway Tracks[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(01):119.[doi:10.12098/j.issn.1674-8247.2024.05.020]

备注/Memo

备注/Memo:
收稿日期:2024-09-27
作者简介:王瑶(1994-),女,工程师。
基金项目:国家自然科学基金项目(52162047); 兰州市科技计划项目(2022-2-26)
更新日期/Last Update: 2025-02-20