[1]柯 妍,孙耀亮,潘自立,等.考虑钢轨波磨三维几何的轮轨接触动力学分析[J].高速铁路技术,2025,(02):7-14.[doi:10.12098/j.issn.1674-8247.2025.02.002]
 KE Yan SUN Yaoliang PAN Zili An Boyang WANG Ping.Analysis of Wheel-rail Contact Dynamics Considering the Three-dimensional Geometry of Rail Corrugation[J].HIGH SPEED RAILWAY TECHNOLOGY,2025,(02):7-14.[doi:10.12098/j.issn.1674-8247.2025.02.002]
点击复制

考虑钢轨波磨三维几何的轮轨接触动力学分析()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
期数:
2025年02期
页码:
7-14
栏目:
理论探索
出版日期:
2025-04-20

文章信息/Info

Title:
Analysis of Wheel-rail Contact Dynamics Considering the Three-dimensional Geometry of Rail Corrugation
文章编号:
1674-8247(2025)02-0007-08
作者:
柯 妍12 孙耀亮12 潘自立3 安博洋12 王 平12
(1.西南交通大学高速铁路线路工程教育部重点实验室, 成都 610031; 2.西南交通大学, 成都 610031; 3.中铁二院工程集团有限责任公司, 成都 610031)
Author(s):
KE Yan12 SUN Yaoliang12 PAN Zili3 An Boyang12 WANG Ping12
(1.Key Laboratory of High-speed Railway Engineering of Ministry of Education,Southwest Jiaotong University,Chengdu 610031,China; 2.Southwest Jiaotong University,Chengdu 610031,China; 3.China Railway Eryuan Engineering Group Co., Ltd.,Chengdu 610031,China)
关键词:
波磨 三维几何不平顺 多体动力学 轮轨滚动接触 钢轨不平顺限值
Keywords:
rail corrugation three-dimensional geometric irregularities multi-body dynamics wheel-rail rolling contact rail irregularity limits
分类号:
U213.4+2
DOI:
10.12098/j.issn.1674-8247.2025.02.002
文献标志码:
A
摘要:
钢轨波浪形磨损是影响列车运行稳定性与安全性的典型伤损形式。针对以往研究将其简化为二维几何不平顺的不足,本文拓展了考虑波磨三维几何的车辆-轨道耦合动力学模型,能够更准确地描述钢轨波磨处的轮轨冲击动力学和瞬时滚动接触力学行为。为深入探究波磨三维几何对轮轨滚动接触行为的影响,本文对比了所建模型与传统动力学模型(基于Hertz-FASTSIM算法求解)的差异。研究结果表明,(1)在车轮通过短波波磨的过程中,本文模型仿真得到的轮轨力波形呈现出双峰特征,揭示了波磨处于不稳定发展阶段的特征;(2)本文模型所得接触斑在纵向和横向上均表现出显著的非对称性,且接触应力的瞬时变化更为剧烈,而传统模型的变化则相对平缓;(3)与传统模型相比,本文模型预测的钢轨波磨深度限值偏于保守,这主要是由于轮轨接触点的瞬时转移行为引发了更为剧烈的轮轨冲击力。然而,随着运行速度的增加,两种模型之间的差异逐渐减小,最终趋于一致。
Abstract:
Rail corrugation, a typical form of rail damage, significantly affects the stability and safety of train operations. To address the limitations of previous studies that simplified it as two-dimensional geometric irregularities, this study extended the vehicle-track coupled dynamics model to incorporate the three-dimensional geometry of rail corrugation, enabling a more accurate description of the wheel-rail impact dynamics and transient rolling contact mechanics at rail corrugation sites. To further investigate the influence of the three-dimensional geometry of corrugation on wheel-rail rolling contact behavior, this study provided a detailed comparison between the proposed model and the traditional dynamics model(using the Hertz-FASTSIM algorithm). The research findings indicate:(1)During the passage of wheels over short-wave corrugation, the wheel-rail force waveform obtained from the proposed model exhibits a double-peak characteristic, revealing the dynamic features of corrugation in an unstable development stage.(2)The contact patch shape obtained from the proposed model shows significant asymmetry in both the longitudinal and transverse directions, with contact stresses undergoing intense transient changes, while the traditional model exhibits relatively smoother variations.(3)Compared to the traditional model, the proposed model predicts more conservative limits for rail corrugation depth, primarily due to the intense wheel-rail impact forces caused by the instantaneous transfer of the contact point. However, as the operating speed increases, the difference between the two models gradually diminishes, eventually converging.

参考文献/References:

[1] WANG Yang, XIAO Hong, ZHANG Zhihai, et al. The Formation, Development and Classification of Rail Corrugation: a Survey on Chinese Metro[J]. Railway Engineering Science, 2025, 33(1): 43-61.
[2] 关庆华, 张斌, 熊嘉阳, 等. 地铁钢轨波磨的基本特征、形成机理和治理措施综述[J]. 交通运输工程学报, 2021, 21(1): 316-337.
GUAN Qinghua, ZHANG Bin, XIONG Jiayang, et al. Review on Basic Characteristics, Formation Mechanisms, and Treatment Measures of Rail Corrugation in Metro Systems[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 316-337.
[3] 金学松, 李霞, 李伟, 等. 铁路钢轨波浪形磨损研究进展[J]. 西南交通大学学报, 2016, 51(2): 264-273.
JIN Xuesong, LI Xia, LI Wei, et al. Review of Rail Corrugation Progress[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 264-273.
[4] 王旭. 长大干线高速铁路自动化沉降监测系统研究[J]. 高速铁路技术, 2017, 8(6): 68-73, 83.
WANG Xu. Research of Automatic Settlement Monitoring System for Long Trunk High Speed Railway[J]. High Speed Railway Technology, 2017, 8(6): 68-73, 83.
[5] 牛留斌, 李谷, 刘金朝, 等. 轮轨力在轨道短波不平顺检测中的应用[J]. 铁道建筑, 2019, 59(8): 133-139.
NIU Liubin, LI Gu, LIU Jinzhao, et al. Application of the Wheel-rail Force in Track Short Wave Irregularity Detection[J]. Railway Engineering, 2019, 59(8): 133-139.
[6] 赵鑫, 温泽峰, 王衡禹, 等. 三维高速轮轨瞬态滚动接触有限元模型及其应用[J]. 机械工程学报, 2013, 49(18): 1-7.
ZHAO Xin, WEN Zefeng, WANG Hengyu, et al. 3D Transient Finite Element Model for High-speed Wheel-rail Rolling Contact and Its Application[J]. Journal of Mechanical Engineering, 2013, 49(18): 1-7.
[7] 刘超, 赵鑫, 赵小罡, 等. 单侧钢轨波磨对两侧轮轨瞬态响应的影响分析[J]. 机械工程学报, 2017, 53(22): 117-124.
LIU Chao, ZHAO Xin, ZHAO Xiaogang, et al. Analysis of Transient Wheel-rail Interactions Excited by Unilateral Rail Corrugation[J]. Journal of Mechanical Engineering, 2017, 53(22): 117-124.
[8] 赵鑫, 黄双超, 杨吉忠, 等. 更高速下轮轨瞬态“滚-滑-跳”接触行为及中/短波不平顺临界限值研究[J]. 铁道学报, 2024, 46(10): 21-32.
ZHAO Xin, HUANG Shuangchao, YANG Jizhong, et al. On Transient Wheel-rail Rolling-sliding-jumping Contact and Critical Sizes of Short/Medium-wave Irregularities at Higher Speeds[J]. Journal of the China Railway Society, 2024, 46(10): 21-32.
[9] 杨春凯, 陈嵘, 王攀杰, 等. 高速行车条件下钢轨焊接接头区轮轨动态相互作用[J]. 铁道建筑, 2022, 62(11): 17-21.
YANG Chunkai, CHEN Rong, WANG Panjie, et al. Dynamic Interaction between Wheel and Rail in Welded Joint Area under High Speed Driving Conditions[J]. Railway Engineering, 2022, 62(11): 17-21.
[10] LEI Xiaoyan. Analysis of the Influence of the Track Vertical Profile Irregularity on the Vibration of the Vehicle and the Track under High Speed Moving Train[J]. Transportmetrica B: Transport Dynamics, 2023, 11(1): 896-911.
[11] 陈浩. 基于动力分析的高速铁路钢轨磨耗预测方法研究[J]. 高速铁路技术, 2022, 13(6): 17-22.
CHEN Hao. Study on Prediction Method of Rail Wear of High-speed Railway Based on Dynamic Analysis[J]. High Speed Railway Technology, 2022, 13(6): 17-22.
[12] 江万红, 王显, 韦凯, 等. 基于轮轨动力响应的地铁波磨地段钢轨打磨限值研究[J]. 铁道建筑, 2021, 61(5): 139-143.
JIANG Wanhong, WANG Xian, WEI Kai, et al. Research on Grinding Limits of Metro Corrugation Section Based on Wheel Rail Dynamic Response[J]. Railway Engineering, 2021, 61(5): 139-143.
[13] 翟婉明. 车辆-轨道耦合动力学[M]. 3版. 北京: 科学出版社, 2007: 12-73.
ZHAI Wanming. Vehicle-track Coupling Dynamics[M]. 3rd ed. Beijing: Science Press, 2007: 12-73.
[14] WU T X, THOMPSON D J. A Hybrid Model for the Noise Generation Due to Railway Wheel Flats[J].Journal of Sound and Vibration, 2002, 251(1): 115-139.
[15] PIERINGER A, KROPP W, NIELSEN J C O. The Influence of Contact Modelling on Simulated Wheel/Rail Interaction Due to Wheel Flats[J]. Wear, 2014, 314(1/2): 273-281.
[16] BAEZA L, RODA A, CARBALLEIRA J, et al. Railway Train-track Dynamics for Wheelflats with Improved Contact Models[J]. Nonlinear Dynamics, 2006, 45(3/4): 385-397.
[17] 陶功权. 和谐型电力机车车轮多边形磨耗形成机理研究[D]. 成都: 西南交通大学, 2018.
TAO Gongquan. Study on Formation Mechanism of Polygonal Wear of Harmonious Electric Locomotive Wheels[D]. Chengdu: Southwest Jiaotong University, 2018.
[18] TB 10761-2024高速铁路工程动态验收技术规范 [S].
TB 10761-2024 Technical Regulations for Dynamic Acceptance for High-speed Railways Construction[S].

备注/Memo

备注/Memo:
收稿日期:2025-01-25
作者简介:柯妍(2000-),女,硕士研究生。
基金项目:国家自然科学基金基础科学中心项目(52388102)
更新日期/Last Update: 2025-04-20