[1]张海凤.干湿循环下水泥改良高液限黏土力学特性试验[J].高速铁路技术,2022,13(05):5-9.[doi:10.12098/j.issn.1674-8247.2022.05.002]
ZHANG Haifeng.Test on Mechanical Properties of Cement-improved High Liquid Limit
Clay during Drying-wetting Cycle[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(05):5-9.[doi:10.12098/j.issn.1674-8247.2022.05.002]
点击复制
干湿循环下水泥改良高液限黏土力学特性试验(
)
《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]
- 卷:
-
13卷
- 期数:
-
2022年05期
- 页码:
-
5-9
- 栏目:
-
理论探索
- 出版日期:
-
2022-10-01
文章信息/Info
- Title:
-
Test on Mechanical Properties of Cement-improved High Liquid Limit
Clay during Drying-wetting Cycle
- 文章编号:
-
1674-8247(2022)05-0005-05
- 作者:
-
张海凤
-
(鲁南高速铁路有限公司, 济南250014)
- Author(s):
-
ZHANG Haifeng
-
(Lunan High-speed Railway Co. ,Ltd. ,Jinan 250014 ,China)
-
- 关键词:
-
改良高液限黏土; 力学特性; 三轴压缩试验; 无侧限抗压强度试验
- Keywords:
-
modified high liquid limit clay; mechanical properties; triaxial compression test; unconfined compressive
strength test
- 分类号:
-
TU411
- DOI:
-
10.12098/j.issn.1674-8247.2022.05.002
- 文献标志码:
-
A
- 摘要:
-
对水泥掺量为4%、5%、6%、8% 和10% 的水泥改良高液限黏土试样进行干湿循环处理,开展三轴压
缩试验和无侧限抗压强度试验,研究改良土的黏聚力、内摩擦角和无侧限抗压强度随干湿循环次数的变化规
律。研究结果表明:(1)内摩擦角、黏聚力和无侧限抗压强度均随干湿循环次数的增加而衰减,无侧限抗压
强度和黏聚力的衰减较大,内摩擦角的衰减较小(小于10%);(2)随着水泥掺量的增加,干湿循环作用导致
的衰减效应逐渐减弱;(3)当水泥掺量为4%、5% 和6% 时,无侧限抗压强度和黏聚力的衰减率较大,最大衰
减率均大于10%;(4)当水泥掺量大于等于8%,黏聚力和无侧限抗压强度的衰减率较小,最大衰减率均小于
10%;(5)工程中可选取8% 作为最优水泥掺量配置改良高液限黏土。
- Abstract:
-
The cement-improved high liquid limit clay samples with a cement content of 4%,5%,6%,8% and 10%
were subject to drying-wetting cycle,and triaxial compression test and unconfined compressive strength test were carried
out to study how the cohesion,internal friction angle and unconfined compressive strength of the improved soil change
with the changes of the number of drying-wetting cycles. The results show that:(1)The internal friction angle,cohesion
and unconfined compressive strength attenuate as the number of drying-wetting cycles increases. The attenuation rate of
unconfined compressive strength and cohesion is relatively large,while the attenuation rate of internal friction angle is
relatively small(less than 10%).(2)With the increase of cement content,the attenuation effect caused by dryingwetting
cycle gradually weakens.(3)When the cement content is 4%,5% and 6%,the attenuation rates of unconfined
compressive strength and cohesion are relatively large,and their maximum attenuation rates are all greater than 10%.
(4)When the cement content is 8% or more,the attenuation rates of cohesion and unconfined compressive strength are
small,and their maximum attenuation rates are all less than 10%.(5)In projects,8% can be selected as the optimal
cement content to prepare the improved high liquid limit clay.
参考文献/References:
[1] 郑德平. 高液限黏土工程特性及改良试验研究[J]. 路基工程,
2022(1): 66 - 71.
ZHENG Deping. Experimental Study on Engineering Characteristics
and Improvement of High Liquid Limit Clay[J]. Subgrade
Engineering, 2022(1): 66 - 71.
[2] 李柱, 王宏. 电石灰改良高液限黏土强度特性研究[J]. 施工技
术, 2021, 50(9): 103 - 106.
LI Zhu, WANG Hong. Study on Strength Characteristics of High
Liquid Limit Clay Improved by Calcium Carbide Dust[J].
Construction Technology, 2021, 50(9): 103 - 106.
[3] 于宝富, 王明岳, 巩曰明, 等. 木质素改良高液限黏土试验研究
[J]. 北方交通, 2021(3): 63 - 66.
YU Baofu, WANG Mingyue, GONG Yueming, et al. Experimental
Study on High Liquid Limit Clay Improved by Lignin[J]. Northern
Communications, 2021(3): 63 - 66.
[4] 夏北伟. 废旧混凝土再生粉料改良高液限黏土试验研究[J]. 城
市道桥与防洪, 2022(7): 187 - 190.
XIA Beiwei. Experimental Study on Improvement of High Liquid Limit
Clay with Recycled Powder of Waste Concrete[J]. Urban Roads
Bridges & Flood Control, 2022(7): 187 - 190.
[5] 刘雨, 朱自强, 陈俊桦. 干湿循环条件下水泥改良泥质板岩粗粒
土的静力特性试验研究[J]. 中南大学学报(自然科学版), 2019,
50(3): 679 - 686.
LIU Yu, ZHU Ziqiang, CHEN Junhua. Experimental Research on
Static Mechanical Properties of Cement-Improved Argillite-Slate
Coarse-Grained Soil under Drying-Wetting Cycles[J]. Journal of
Central South University( Science and Technology), 2019, 50(3):
679 - 686.
[6] 夏林枫, 董伟智, 葛世平, 等. 干湿循环条件下的木质素改良土三
轴试验研究[J]. 吉林建筑大学学报, 2020, 37(4): 35 - 38.
XIA Linfeng, DONG Weizhi, GE Shiping, et al. Analysis of Soil
Improved by Lignin in Triaxial Test under Wetting-Drying Cycles[J].
Journal of Jilin Jianzhu University, 2020, 37(4): 35 - 38.
[7] 崔宏环, 朱超杰, 杨尚礼, 等. 干湿循环作用下改良粉质粘土的
路用性能[J]. 华南理工大学学报(自然科学版), 2022, 50(2):
42 - 49.
CUI Honghuan, ZHU Chaojie, YANG Shangli, et al. Road Performance
of Improved Silty Clay under the Action of Drying-Wetting Cycles[J].
Journal of South China University of Technology( Natural Science
Edition), 2022, 50(2): 42 - 49.
[8] 陈乐求, 张家生, 陈俊桦. 泥质板岩改良土物理力学性质试验
[J]. 湖南理工学院学报(自然科学版), 2017, 30(1): 63 - 68.
CHEN Leqiu, ZHANG Jiasheng, CHEN Junhua. Test of Physical and
Mechanical Properties of Improved Argillite-Slate Soil[J]. Journal
of Hunan Institute of Science and Technology( Natural Sciences),
2017, 30(1): 63 - 68.
[9] 费少刚, 王保田, 单熠博, 等. 硅灰、水泥复合改良膨胀土试验研
究[J]. 水电能源科学, 2022, 40(9): 190 - 193.
FEI Shaogang, WANG Baotian, SHAN Yibo, et al. Experimental Study
on Composite Improvement of Expansive Soil with Silica Fume and
Cement[J]. Water Resources and Power, 2022, 40(9): 190 - 193.
[10] 王建华, 高玉琴. 干湿循环过程导致水泥改良土强度衰减机理的
研究[J]. 中国铁道科学, 2006, 27(5): 23 - 27.
WANG Jianhua, GAO Yuqin. Study on the Strength Degradation
Mechanism of Cement-Soils Resulting from Dry-Wet Cycles[J].
China Railway Science, 2006, 27(5): 23 - 27.
[11] 曾帅, 曾长贤, 卞友艳, 等. 干湿循环过程中红黏土改良土路基
填料试验研究[J]. 铁道建筑, 2020, 60(6): 82 - 84.
ZENG Shuai, ZENG Changxian, BIAN Youyan, et al. Experimental
Study on Red Clay Improved Soil as Subgrade Filler in the Process of
Dry-Wet Cycles[J]. Railway Engineering, 2020, 60(6): 82 - 84.
[12] 余先江. 低液限粉土及其改良土干湿循环特性试验研究[J]. 石
家庄铁道大学学报(自然科学版), 2012, 25(1): 86 - 88.
YU Xianjiang. Test Study on Engineering Properties of Low Liquid
Limit Silt and Improved Soil under Wetting-Drying Cycle[J]. Journal
of Shijiazhuang Tiedao University( Natural Science), 2012, 25(1):
86 - 88.
[13] 张瑜, 黄珂, 朱文旺. 水泥、石灰改良粉土试验研究[J]. 中国港
湾建设, 2017, 37(3): 33 - 36.
ZHANG Yu, HUANG Ke, ZHU Wenwang. Experimental Study
on Cement and Lime to Improve Silt Soil[J]. China Harbour
Engineering, 2017, 37(3): 33 - 36.
[14] 戴范, 刘枫, 黄希望, 等. 一级公路高液限土水泥改良试验研究
[J]. 中外公路, 2020, 40(1): 240 - 242.
DAI Fan, LIU Feng, HUANG Xiwang, et al. Experimental Study on
Cement Improvement of High Liquid Limit Soil of First Class Highway
[J]. Journal of China & Foreign Highway, 2020, 40(1): 240 - 242.
[15] 陈维超, 杨伟军. 水泥改良砂土无侧限抗压强度试验研究[J].
中外公路, 2019, 39(6): 188 - 196.
CHEN Weichao, YANG Weijun. Experimental Research on
Unconfined Compressive Strength of Cement Improved Sand[J].
Journal of China & Foreign Highway, 2019, 39(6): 188 - 196.
备注/Memo
- 备注/Memo:
-
收稿日期:2022 -09 -26
作者简介:张海凤(1981 -),男,高级工程师。
更新日期/Last Update:
2022-10-01