[1]李登峰,谢锦鸿.隧道底鼓的变形研究及处治措施[J].高速铁路技术,2022,13(05):86-90.[doi:10.12098/j.issn.1674-8247.2022.05.017]
 Li Dengfeng,XIE Jinhong.Deformation Study and Treatment Measures of Tunnel Floor Heaves[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(05):86-90.[doi:10.12098/j.issn.1674-8247.2022.05.017]
点击复制

隧道底鼓的变形研究及处治措施()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
13卷
期数:
2022年05期
页码:
86-90
栏目:
勘察设计
出版日期:
2022-10-01

文章信息/Info

Title:
Deformation Study and Treatment Measures of Tunnel Floor Heaves
文章编号:
1674-8247(2022)05-0086-05
作者:
李登峰谢锦鸿
(中国五冶集团有限公司八公司, 成都 610063)
Author(s):
Li DengfengXIE Jinhong
(No. 8 Company of China MCC 5 Group Co. ,Ltd , Chengdu 610063 ,China)
关键词:
数值模拟 隧道底鼓 现场监测 治理措施
Keywords:
numerical simulationtunnel floor heavesfield monitoringtreatment measures
分类号:
U457.2
DOI:
10.12098/j.issn.1674-8247.2022.05.017
文献标志码:
A
摘要:
为探究某隧道发生底鼓的原因,文章利用MIDAS 数值模拟软件模拟了隧道地质环境和施工工况。 结果表明:(1)高地应力和衬砌支护强度不足是导致隧道底鼓发生的主要原因,现场监测验证了数值模拟的 结果;(2)结合模拟结果、监测数据和工程经验,从设计处治和施工处治两个方面提出了治理隧道底鼓的有效 措施,后期监测数据表明以上两种处治措施有效的治理了隧道底鼓病害。本文研究成果可为类似的隧道底 鼓病害治理提供参考。
Abstract:
In order to identify the causes of the floor heaves of a tunnel,MIDAS numerical simulation software was used to simulate the geological environment and construction conditions of that tunnel. The results show that high crustal stress and insufficient lining support strength are the main causes of tunnel floor heaves,and the results of this numerical simulation were verified by field monitoring. According to the simulation results,monitoring data and engineering experience,this paper proposes effective measures to treat tunnel floor heaves from design and construction. The later monitoring data show that the above two treatment measures can effectively treat tunnel floor heaves. The research results of this paper can provide a reference for the treatment of similar tunnel floor heaves.

参考文献/References:

[1] 张建, 梁庆国, 王永刚, 等. 黄土隧道底鼓机理分析与防治技术 [J]. 隧道与地下工程灾害防治, 2020, 2(1): 84 - 90. ZHANG Jian, LIANG Qingguo, WANG Yonggang, et al. Deformation Mechanism and Prevention of Floor Heave in Loess Tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(1): 84 - 90.
[2] 高登. 某高速公路隧道底鼓原因分析及处治措施研究[J]. 公路, 2019, 64(3): 326 - 331. GAO Deng. Cause Analysis and Treatment Measures of a Highway Tunnel Hloor Heave[J]. Highway , 2019, 64(3): 326 - 331.
[3] 杨建民, 徐怀仁, 舒东利, 等. 对隧道发生底鼓机理及对策的思 考[J]. 铁道工程学报, 2021, 38(2): 74 - 79. YANG Jianmin, XU Huairen, SHU Dongli, et al. Reflection on the Mechanism of Tunnel Floor Heave and Its Countermeasures[J]. Journal of Railway Engineering Society, 2021, 38(2): 74 - 79.
[4] 屈小七, 孟陆波. 软岩隧道底鼓变形机理及防治措施综述[J]. 人民长江, 2019, 50(S2): 143 - 148. QU Xiaoqi, MENG Lubo. Bottom Heaving Deformation Mechanism and Control Measures of Soft Rock Tunnel[J]. Yangtze River, 2019, 50(S2): 143 - 148.
[5] 刘建国, 王春明, 薛宁鸿, 等. 强膨胀岩浅埋富水隧道变形分析 及施工控制[J]. 高速铁路技术, 2018, 9(1): 84 - 89. LIU Jianguo, WANG Chunming, XUE Ninghong, et al. Deformation Analysis and Construction Control of Heavily Expansive Rock Tunnels with Shallow-Buried Rich Water[J]. High Speed Railway Technology, 2018, 9(1): 84 - 89.
[6] 王崇艮, 王茂靖, 赵文, 等. 兰渝铁路梅岭关隧道底鼓段病害成 因分析[J]. 高速铁路技术, 2020, 11(6): 63 - 68. WANG Chonggen, WANG Maojing, ZHAO Wen, et al. Cause Analysis of Diseases in the Floor Heave Section of Meilingguan Tunnel in Lanzhou-Chongqing Railway[J]. High Speed Railway Technology, 2020, 11(6): 63 - 68.
[7] GUO Gangye, KANG Hongpu, QIAN Deyu, et al. Mechanism for Controlling Floor Heave of Mining Roadways Using Reinforcing Roof and Sidewalls in Underground Coal Mine[J]. Sustainability, 2018, 10(5): 1413.
[8] ZHAI Xinxian, HUANG Guangshuai, CHEN Chengyu, et al. Combined Supporting Technology with Bolt-Grouting and Floor Pressure-Relief for Deep Chamber: an Underground Coal Mine Case Study[J]. Energies, 2018, 11(1): 67.
[9] 郑长青, 汤印, 路军富. 高地应力水平层状岩体结构特征对隧道 底鼓影响分析[J]. 铁道标准设计, 2022, 66(1): 115 - 120. ZHENG Changqing, TANG Yin, LU Junfu. Analysis on the Influence of Horizontal Layered Rock Mass with High In-Situ Stress on Tunnel Floor Heave[J]. Railway Standard Design, 2022, 66(1): 115 - 120.
[10] 田洪铭, 陈卫忠, 郑朋强, 等. 考虑流变效应的高地应力软岩隧 道断面形态优化研究[J]. 岩土力学, 2013, 34(S2): 265 - 271. TIAN Hongming, CHEN Weizhong, ZHENG Pengqiang, et al. Study of Section Optimization for High Geostress Soft Rock Tunnel Considering Rheological Effect[J]. Rock and Soil Mechanics, 2013, 34(S2): 265 - 271.
[11] TB 10621 - 2014 高速铁路设计规范[S]. TB 10621 - 2014 Code for Design of High Speed Railway[S].

相似文献/References:

[1]李兴龙,蔺文帅.复杂地质条件下矩形顶管下穿管线影响分析[J].高速铁路技术,2023,14(02):94.[doi:10.12098/j.issn.1674-8247.2023.02.019]
 LI Xinglong,LIN Wenshuai.Impact Analysis for Rectangular Pipe Jacking with Underpass Pipeline Under Complex Geological Conditions[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(05):94.[doi:10.12098/j.issn.1674-8247.2023.02.019]
[2]蒋楚生,李昭颖,肖世国,等.两类拉筋的对拉薄壁面板式路堤挡墙性能对比分析[J].高速铁路技术,2023,14(04):8.[doi:10.12098/j.issn.1674-8247.2023.04.002]
 JIANG Chusheng,LI Zhaoying,XIAO Shiguo,et al.Comparison Analysis of Performance of Thin Panels Mutually Anchored by Geogrids and Steel Bars in Reinforced Embankments[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(05):8.[doi:10.12098/j.issn.1674-8247.2023.04.002]
[3]付 刚,刘威,何思明,等.缺水文资料地区小流域暴雨洪水数值模拟研究[J].高速铁路技术,2023,14(05):40.[doi:10.12098/j.issn.1674-8247.2023.05.008]
 FU Gang,LIU Wei,HE Siming,et al.A Study on Numerical Simulation of Rainstorms and Flood in Small Watershed within the Ungauged Basin[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(05):40.[doi:10.12098/j.issn.1674-8247.2023.05.008]
[4]成启航,程 云,郑六益.基于TRIZ理论的某高原铁路陡坡路基方案设计[J].高速铁路技术,2023,14(05):51.[doi:10.12098/j.issn.1674-8247.2023.05.010]
 CHENG Qihang,CHENG Yun,ZHENG Liuyi.Scheme Design of Steep Slope Subgrade for a Plateau Railway Based on TRIZ Theory[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(05):51.[doi:10.12098/j.issn.1674-8247.2023.05.010]
[5]马利军,王友枞,杨明勇,等.海陆交互相不同地层盾构掘进影响对比分析[J].高速铁路技术,2023,14(06):19.[doi:10.12098/j.issn.1674-8247.2023.06.004]
 MA Lijun,WANG Youzong,YANG Mingyong,et al.Comparative Analysis for Impact of Shield Tunneling on Different Strata in Marine-terrestrial Interaction Zone[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(05):19.[doi:10.12098/j.issn.1674-8247.2023.06.004]
[6]王宇,黄德贵.高压旋喷桩单桩施工挤土效应数值模拟分析[J].高速铁路技术,2024,15(03):73.[doi:10.12098/j.issn.1674-8247.2024.03.014]
 WANG Yu,HUANG Degui.A Numerical Simulation Analysis of Soil Displacement Effects Induced by Construction of Single High-pressure Jet Grouted Pile[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(05):73.[doi:10.12098/j.issn.1674-8247.2024.03.014]
[7]车东坡.超大断面异型隧道台阶法施工工法优选研究[J].高速铁路技术,2024,15(02):113.[doi:10.12098/j.issn.1674-8247.2024.02.021]
 CHE Dongpo.Optimal Selection Study of Construction Methodology for Super-large Cross-section Irregular-shaped Tunnel Using Bench Method[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(05):113.[doi:10.12098/j.issn.1674-8247.2024.02.021]

备注/Memo

备注/Memo:
收稿日期:2022 -04 -13
作者简介:李登峰(1987 -),男,工程师。
更新日期/Last Update: 2022-10-01