[1]杨飞,张云娇,范丁元.基于改进马尔科夫模型的铁路客运量预测研究[J].高速铁路技术,2023,14(05):45-50.[doi:10.12098/j.issn.1674-8247.2023.05.009]
YANG Fei,ZHANG Yunjiao,FAN Dingyuan.A Study on Railway Passenger Volume Forecast Based on Improved Markov Model[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(05):45-50.[doi:10.12098/j.issn.1674-8247.2023.05.009]
点击复制
基于改进马尔科夫模型的铁路客运量预测研究()
《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]
- 卷:
-
14卷
- 期数:
-
2023年05期
- 页码:
-
45-50
- 栏目:
-
- 出版日期:
-
2023-11-20
文章信息/Info
- Title:
-
A Study on Railway Passenger Volume Forecast Based on Improved Markov Model
- 文章编号:
-
1674-8247(2023)05-0045-06
- 作者:
-
杨飞; 张云娇; 范丁元
-
中铁工程设计咨询集团有限公司, 北京 100055
- Author(s):
-
YANG Fei; ZHANG Yunjiao; FAN Dingyuan
-
China Railway Engineering Design and Consulting Group Co. ,Ltd. ,Beijing? 100055 ,China
-
- 关键词:
-
铁路客运量; 优化; 马尔科夫模型; 状态区间划分; 预测
- Keywords:
-
railway passenger volume; optimization; Markov model; state interval division; forecast
- 分类号:
-
U294.1+3
- DOI:
-
10.12098/j.issn.1674-8247.2023.05.009
- 文献标志码:
-
A
- 摘要:
-
为提高铁路客运量预测的精度,在预测精度更优条件下,对马尔科夫模型状态划分区间的取值范围进行了研究,并在此基础上对模型进行了改进。先通过多层感知器神经网络预测了2004-2019年北京市的铁路客运量,再运用改进的马尔科夫模型对多层感知器神经网络预测结果进行修正,并与均等划分和均值-方差法划分状态区间的马尔科夫模型的预测修正结果进行对比。研究结果表明,改进的马尔科夫模型降低了预测过程的复杂性,具有更高的预测精度。相比于均等划分、均值-方差法划分状态区间的模型,改进的马尔科夫模型的预测误差分别减少了0.601%和0.683%。
- Abstract:
-
To improve the accuracy of railway passenger volume forecast,the value range of state division intervals in the Markov model was studied under better forecast accuracy conditions,and then the model was improved based on the results. The railway passenger volume in Beijing from 2004 to 2019 was forecasted using a multilayer perceptron neural network. The improved Markov model was then used to adjust the forecast results from the neural network,and the results were compared with those from Markov models using equal division and mean-variance method for state interval division. The findings indicate that the improved Markov model reduces the complexity of the forecasting process and has higher forecast accuracy. Compared to the models using equal division and mean-variance method for state interval division,the improved Markov model reduces the forecast errors by 0. 601% and 0. 683% respectively.
参考文献/References:
[1]姜永杰,张书豪,吴光,等. 基于灰色系统及BP神经网络算法的边坡变形预测精确度影响分析[J]. 高速铁路技术,2020,11(5):13-19. JIANG Yongjie,ZHANG Shuhao,WU Guang,et al. Influence Analysis of Slope Deformation Prediction Accuracy Based on Grey System and BP Neural Network Algorithm[J]. High Speed Railway Technology,2020,11(5):13-19.
[2]吕鹏飞,庄元,李洋,等. 船舶交通量的BP神经网络-马尔科夫预测模型[J]. 上海海事大学学报,2017,38(2):17-21,28. LV Pengfei,ZHUANG Yuan,LI Yang,et al. BP Neural Network Combined with Markov Prediction Model of Ship Traffic Flow[J]. Journal of Shanghai Maritime University,2017,38(2):17-21, 28.
[3]裴同松,裴彧. 基于马尔科夫链- BP神经网络模型对公路运量的预测研究[J]. 重庆交通大学学报(自然科学版),2021,40(2):35-41. PEI Tongsong,PEI Yu. Prediction of Highway Traffic Volume Based on Markov Chain-BP Neural Network Model [J]. Journal of Chongqing Jiaotong University (Natural Science),2021,40(2):35-41.
[4]尚庆松,石庆升,崔炳谋. 基于灰色-马尔科夫预测模型的售票窗口客流量预测研究[J]. 铁道运输与经济,2019,41(1):85-89. SHANG Qingsong,SHI Qingsheng,CUI Bingmou. A Study on Passenger Volume Forecast at the Ticketing Counter Based on Gray-Markov Forecast Model [J]. Railway Transport and Economy,2019, 41(1):85-89.
[5]周子东,郑东健,蒋明,等. 偏最小二乘-马尔科夫模型在大坝位移预测中的应用[J]. 三峡大学学报(自然科学版),2015,37(3):15-18. ZHOU Zidong,ZHENG Dongjian,JIANG Ming,et al. Application of PLS-Markov Model to Dam Displacement Prediction [J]. Journal of China Three Gorges University (Natural Sciences),2015,37(3):15-18.
[6]马彩雯,王晓明. 背景值优化的灰色马尔科夫模型在铁路客流预测中的应用[J]. 大连交通大学学报,2019,40(1):18-21. MA Caiwen,WANG Xiaoming. Application of Grey Markov Model with Background Value Optimization in Railway Passenger Flow Prediction [J]. Journal of Dalian Jiaotong University,2019,40(1):18-21.
[7]潘丽,李林. 基于灰色马尔科夫模型的上海铁路客运量预测[J].物流科技,2019,42(3):99-102. PAN Li,LI Lin. Passenger Traffic Forecast of Shanghai Railway Based on Grey Markov Model[J]. Logistics Sci-Tech,2019,42(3):99-102.
[8]何启,戴波. 基于灰色神经网络-加权马尔可夫链的大坝变形监控模型及预报研究[J]. 中国农村水利水电,2016(10):146-150,155. HE Qi,DAI Bo. Dam Deformation Monitoring Model Based on Gray Neural Network-weighted Markov Chain and Prediction Research [J]. China Rural Water and Hydropower,2016(10):146-150,155.
[9]刘军凯,崔振新. 基于灰色新陈代谢马尔科夫模型对跑道侵入事件的分析及预测[J]. 综合运输,2016,38(3):62-65. LIU Junkai,CUI Zhenxin. Analysis and Prediction of Runway Incursion Events Based on Grey Metabolism Markov Model [J]. China Transportation Review,2016,38(3):62-65.
[10]南敬林. 铁路客运量预测影响因素分析[J]. 综合运输,2016, 38(2):35-40. NAN Jinglin. The Analysis of Influencing Factor about Railway Passenger Forecast[J]. China Transportation Review,2016,38(2):35-40.
备注/Memo
- 备注/Memo:
-
收稿日期:2021-10-12
作者简介:杨飞(1995-),男,工程师。
更新日期/Last Update:
2023-11-20