[1]江凯,王茂靖,冯涛,等.某高速铁路沿线天然场地季节冻胀特性监测与分析[J].高速铁路技术,2024,15(04):100-105.[doi:10.12098/j.issn.1674-8247.2024.04.018]
 JIANG Kai,WANG Maojing,FENG Tao,et al.Monitoring and Analysis of Seasonal Frost Heave Characteristics of Natural Sites along a High-speed Railway[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(04):100-105.[doi:10.12098/j.issn.1674-8247.2024.04.018]
点击复制

某高速铁路沿线天然场地季节冻胀特性监测与分析()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
15卷
期数:
2024年04期
页码:
100-105
栏目:
勘察设计
出版日期:
2024-08-30

文章信息/Info

Title:
Monitoring and Analysis of Seasonal Frost Heave Characteristics of Natural Sites along a High-speed Railway
文章编号:
1674-8247(2024)04-00100-06
作者:
江凯王茂靖冯涛段光武
中铁二院工程集团有限责任公司,成都 610031
Author(s):
JIANG KaiWANG MaojingFENG TaoDUAN Guangwu
China Railway Eryuan Engineering Group Co. ,Ltd. ,Chengdu 610031 ,China
关键词:
高速铁路季节冻土冻胀特性长期监测
Keywords:
high-speed railwayseasonal frozen soilfrost heave characteristicslong-term monitoring
分类号:
TU44;U238
DOI:
10.12098/j.issn.1674-8247.2024.04.018
文献标志码:
A
摘要:
某高速铁路沿线季节性冻土大面积分布,本文依据地形地貌、土性成分及水文地质条件等特征,选定14处天然场地。通过冻融周期的监测,得到沿线地基土的冻结融化速率、最大季节冻深及地表变形量等重要数据。通过分析积雪场地及裸露场地的冻结融化过程与地表变形情况,结合气温、降水量、地表雪盖等因素,分析了高速铁路沿线季节性冻土的冻融特性。研究结果表明:(1)沿线有雪条件下天然场地最大冻结深度19~90cm,平均值为45cm;(2)沿线季节冻土冻结速率0.27~1.20cm/d,融化速率普遍大于冻结速率,为0.28~1.92cm/d;(3)积雪对保持土体温度、抑制土体冻结具有良好效果,能有效缩短冻结、融化时间,使最大冻结深度减小18%~24%;(4)冻胀量呈由西向东增大趋势,其变化规律和气候条件吻合。研究成果可为类似季节性冻土地区高速铁路设计及冻害防治提供借鉴。
Abstract:
Seasonal frozen soil is widely distributed along a High-speed railway. This paper selects 14 natural sites based on their topographical features,soil composition,and hydrogeological conditions. Through continuous monitoring over complete freeze-thaw cycles,crucial data such as the freezing and thawing rates of the subgrade soil,maximum seasonal frost depth,and surface deformation along the route were obtained. By analyzing the freeze-thaw process and surface deformation in snow-covered and exposed sites,combined with factors like temperature,precipitation,and snow thickness,the freeze-thaw characteristics of seasonal frozen soil along the high-speed railway are summarized. The research findings indicate:(1)The maximum freezing depth of natural sites under the snow condition is 19~90 cm,with an average of 45 cm.(2)The freezing rate varies from 0.27 cm/d to 1.20 cm/d,while the thawing rate,generally higher than the freezing rate,ranges from 0.28 cm/d to 1.92 cm/d.(3)Snow cover effectively maintains soil temperature and inhibits soil freezing,significantly shortening the duration of the freezing and thawing processes,resulting in a reduction of the maximum freezing depth by 18% to 24%. (4)The frost heave exhibits an increasing trend from west to east,and its variation pattern aligns with climatic conditions. These research outcomes provide valuable insights for the design of high-speed railways and the prevention of frost damage in similar seasonal frozen soil regions.

参考文献/References:

[1] 张先军. 哈大高速铁路路基冻胀规律及影响因素分析[J]. 铁道标准设计,2013,57(7):8-12. ZHANG Xianjun. Analysis of Frost Heave Laws in Subgrade on Haerbin-Dalian High-speed Railway and Its Influence Factors[J]. Railway Standard Design,2013,57(7):8-12.
[2] 王茂靖,江凯. 莫斯科喀山高速铁路沿线主要工程地质问题及防治研究[J]. 高速铁路技术,2018,9(6):37-43,74. WANG Maojing,JIANG Kai. Main Engineering Geological Problems along and Countermeasures for Moscow-Kazan High-speed Railway [J]. High Speed Railway Technology,2018,9(6):37-43,74.
[3] 江凯,冯涛,王茂靖,等. 某高速铁路沿线季节冻土冻胀特性分析[J]. 高速铁路技术,2017,8(5):1-4. JIANG Kai,FENG Tao,WANG Maojing,et al. Analysis on Frost Heave Characteristics of Seasonal Frost Soil along Moscow-Kazan High-speed Railway[J]. High Speed Railway Technology,2017,8(5):1-4.
[4] 张东卿,薛元,罗强,等. 俄罗斯某高铁抗冻胀基床结构研究[J].铁道工程学报,2018,35(4):29-33. ZHANG Dongqing,XUE Yuan,LUO Qiang,et al. Research on the Anti-Frost Subgrade Bed Structure of Moscow-Kazan High-speed Railway in Russia[J]. Journal of Railway Engineering Society, 2018,35(4):29-33.
[5] 刘大园,庞玲,姚力. 莫斯科至喀山高铁轨道设计综述[J]. 山西建筑,2020,46(11):126-127,184. LIU Dayuan,PANG Ling,YAO Li. The Track Design Summary of High-speed Railway from Moscow to Kazan[J]. Shanxi Architecture,2020,46(11):126-127,184.
[6] 郭建勋,陈列,刘伟,等. 莫斯科至喀山高速铁路桥涵统一跨构通用图设计[J]. 高速铁路技术,2018,9(4):50-56. GUO Jianxun,CHEN Lie,LIU Wei,et al. Standard Drawing Design on Bridge and Culvert of Moscow-Kazan High-speed Railway[J]. High Speed Railway Technology,2018,9(4):50-56.

相似文献/References:

[1]王 旭.长大干线高速铁路自动化沉降监测系统研究[J].高速铁路技术,2017,8(06):68.[doi:10.12098/j.issn.1674-8247.2017.06.014]
 WANG Xu.Research of Automatic Settlement Monitoring System for Long Trunk High Speed Railway[J].HIGH SPEED RAILWAY TECHNOLOGY,2017,8(04):68.[doi:10.12098/j.issn.1674-8247.2017.06.014]
[2]陈兴海,王朋,于翠翠.鲁南某高速铁路岩溶塌陷风险评估及防治对策[J].高速铁路技术,2022,13(05):79.[doi:10.12098/j.issn.1674-8247.2022.05.016]
 CHEN Xinghai,WANG Peng,YU Cuicui.Risk Assessment and Countermeasures for Karst Collapse of a Highspeed Railway in Southern Shandong[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(04):79.[doi:10.12098/j.issn.1674-8247.2022.05.016]
[3]林奎.成自铁路引入天府机场线路方案比选回顾[J].高速铁路技术,2022,13(05):91.[doi:10.12098/j.issn.1674-8247.2022.05.018]
 LIN Kui.Review of Comparison and Selection of Route Plans for the Connection of the Chengdu-Zigong High-speed Railway to Tianfu Airport[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(04):91.[doi:10.12098/j.issn.1674-8247.2022.05.018]
[4]周宏,宋元胜.高速铁路引入铁路枢纽线路选线研究[J].高速铁路技术,2022,13(05):96.[doi:10.12098/j.issn.1674-8247.2022.05.019]
 ZHOU Hong,SONG Yuansheng.Study on Route Selection for Introducing High-speed Railways into Railway Hubs[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(04):96.[doi:10.12098/j.issn.1674-8247.2022.05.019]
[5]陈 浩.基于动力分析的高速铁路钢轨磨耗预测方法研究[J].高速铁路技术,2022,13(06):17.[doi:10.12098/j.issn.1674-8247.2022.06.004 ]
 CHEN Hao.Study on Prediction Method of Rail Wear of High-speed Railway Based on Dynamic Analysis[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(04):17.[doi:10.12098/j.issn.1674-8247.2022.06.004 ]
[6]董月龙.金建高速铁路大中河流水文计算分析[J].高速铁路技术,2022,13(06):79.[doi:10.12098/j.issn.1674-8247.2022.06.015 ]
 DONG Yuelong.Hydrological Calculation and Analysis of Large and Medium Rivers along Jinhua-Jiande High-speed Railway[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(04):79.[doi:10.12098/j.issn.1674-8247.2022.06.015 ]
[7]王佩雷.复杂艰险山区高速铁路建设四电接口管理技术研究[J].高速铁路技术,2023,14(01):38.[doi:10.12098/j.issn.1674-8247.2023.01.007]
 WANG Peilei.A Study on Interface Management Technology of Communication, Signal,Electrical,and Electrification Systems for High-speed Railway Construction in Challenging Mountain Areas[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(04):38.[doi:10.12098/j.issn.1674-8247.2023.01.007]
[8]戴龙钦,余少华,蔡康.合福高速铁路闽赣段防洪对策分析[J].高速铁路技术,2023,14(01):91.[doi:10.12098/j.issn.1674-8247.2023.01.017]
 DAI Longqin,YU Shaohua,CAI Kang.Analysis of Flood Control Measures for Fujian-Jiangxi Section of Hefei-Fuzhou High-speed Railway[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(04):91.[doi:10.12098/j.issn.1674-8247.2023.01.017]
[9]尹航.沪渝蓉高速铁路(宜涪段)马鹿箐隧道选线研究[J].高速铁路技术,2023,14(01):106.[doi:10.12098/j.issn.1674-8247.2023.01.020]
 YIN Hang.A Study on Route Selection of Maluqing Tunnel of Shanghai-Chongqing-Chengdu High-speed Railway(Yichang-Fuling Section)[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(04):106.[doi:10.12098/j.issn.1674-8247.2023.01.020]
[10]任俊桦.基于类比分析的高速铁路和城际铁路运量预测研究[J].高速铁路技术,2023,14(01):54.[doi:10.12098/j.issn.1674-8247.2023.01.010]
 REN Junhua.A Study on Forecast of Traffic Volume for High-speed Railway and Intercity Railway Based on Analog Analysis[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(04):54.[doi:10.12098/j.issn.1674-8247.2023.01.010]

备注/Memo

备注/Memo:
收稿日期:2024-05-20
作者简介:江凯(1981-),男,高级工程师。
基金项目:中国国家铁路集团有限公司重大课题(2016G002-A);中国中铁股份有限公司重大专项项目(2016-重大专项-01);中铁二院工程集团有限责任公司科研项目(KYY2015071)
更新日期/Last Update: 2024-08-30