[1]付 娜,王闵文,陈 果,等.高速铁路无砟轨道振动相关问题及频域研究方法综述[J].高速铁路技术,2024,15(05):30-34,77.[doi:10.12098/j.issn.1674-8247.2024.05.005]
 FU Na,WANG Minwen,CHEN Guo,et al.Review on Problems related to Vibration Effects of Ballastless Track and Analyzing Method in Frequency Domain[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(05):30-34,77.[doi:10.12098/j.issn.1674-8247.2024.05.005]
点击复制

高速铁路无砟轨道振动相关问题及频域研究方法综述()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
15卷
期数:
2024年05期
页码:
30-34,77
栏目:
理论探索
出版日期:
2024-10-30

文章信息/Info

Title:
Review on Problems related to Vibration Effects of Ballastless Track and Analyzing Method in Frequency Domain
文章编号:
1674-8247(2024)05-0030-05
作者:
付 娜王闵文陈 果胡杨梅杜宸卉付文靖洋
( 成都纺织高等专科学校, 成都 611731)
Author(s):
FU NaWANG MinwenCHEN GuoHU YangmeiDU ChenhuiFU Wenjingyang
(Chengdu Textile College, Chengdu 611731, China)
关键词:
高速铁路 无砟轨道 频域方法 功率流理论 EFEA法
Keywords:
high-speed railway ballastless track methods in frequency domain power flow theory energy finite element method(EFEA)
分类号:
U211.3
DOI:
10.12098/j.issn.1674-8247.2024.05.005
文献标志码:
A
摘要:
本文基于高速铁路运营过程中广泛存在的环境振动、噪声和无砟轨道振动伤损等问题,重点综述无砟轨道振动与相关问题的关联性以及无砟轨道振动频域研究方法,归纳各频域方法的原理和应用,对比分析各频域方法的优势和限制,阐明各频域方法的适用性。结果表明:(1)无砟轨道振动与环境振动、噪声和轨道振动伤损存在空间位置和频域范围两方面关联性;(2)无砟轨道振动对环境振动、噪声以及车轮多边形、钢轨波磨、扣件弹条断裂等振动伤损具有重要作用;(3)无砟轨道振动频域研究方法可大致归纳为基于周期轨道结构理论的频域方法和基于功率流理论的频域方法,两种方法均适用于无砟轨道中高频振动特性及相关问题的研究。
Abstract:
This paper focuses on the pervasive issues of environmental vibration, noise, and ballastless track vibration damage during the operation of high-speed railways. It primarily reviews the correlation between ballastless track vibrations and related issues, as well as the frequency domain research methods for ballastless track vibrations. The principles and applications of various frequency domain methods are summarized, and their advantages and limitations are comparatively analyzed to clarify their respective applicability. The results indicate that:(1)ballastless track vibrations are correlated with environmental vibrations, noise, and track vibration damage in terms of spatial location and frequency domain range.(2)ballastless track vibrations play a crucial role in influencing environmental vibrations, noise, and vibration-induced damages such as wheel polygonization, rail corrugation, and fastener clip fractures.(3)frequency domain research methods for ballastless track vibrations can be broadly categorized into those based on periodic track structure theory and those grounded in power flow theory. Both approaches are suitable for investigating the mid-to-high frequency vibration characteristics and related issues of ballastless tracks.

参考文献/References:

[1] 康熊, 刘秀波, 李红艳, 等. 高速铁路无砟轨道不平顺谱[J]. 中国科学(技术科学), 2014, 44(7): 687-696.
KANG Xiong, LIU Xiubo, LI Hongyan, et al. PSD of Ballastless Track Irregularities of High-speed Railway[J]. Scientia Sinica(Technologica), 2014, 44(7): 687-696.
[2] 李忠继, 陈志贤, 姚力, 等. 高速铁路车轮多边形对轨道动作用分析[J]. 高速铁路技术, 2021, 12(5): 73-78.
LI Zhongji, CHEN Zhixian, YAO Li, et al. Analysis on Dynamic Effect of Polygonal Wheels on Tracks of High-speed Railway[J]. High Speed Railway Technology, 2021, 12(5): 73-78.
[3] 吕丽芳. 高速铁路引起的环境振动研究[D]. 上海: 同济大学, 2005.
LV Lifang. Study on Environmental Vibration Caused by High-Speed Railway[D].Shanghai: Tongji University, 2005.
[4] LI Muxiao, ZHONG Shuoqiao, DENG Tiesong, et al. Analysis of Source Contribution to Pass-by Noise for a Moving High-speed Train Based on Microphone Array Measurement[J]. Measurement, 2021, 174: 109058.
[5] THOMPSON D J.铁路噪声与振动--机理、模型和控制方法[M]. 北京:科学出版社,2014.
THOMPSON D J.Railway Noise and Vibration: Mechanism, Modeling and Means of Control [M]. Beijing:Science Press,2014.
[6] 圣小珍, 成功, THOMPSON D J, 等. 轮轨噪声预测模型研究进展[J]. 交通运输工程学报, 2021, 21(3): 20-38.
SHENG Xiaozhen, CHENG Gong, THOMPSON D J, et al. Research Progress on Wheel-rail Noise Prediction Models[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 20-38.
[7] 朱海燕, 袁遥, 肖乾, 等. 钢轨波磨研究进展[J]. 交通运输工程学报, 2021, 21(3): 110-133.
ZHU Haiyan, YUAN Yao, XIAO Qian, et al. Research Progress on Rail Corrugation[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 110-133.
[8] 谷永磊, 赵国堂, 王衡禹, 等. 轨道振动特性对高速铁路钢轨波磨的影响[J]. 中国铁道科学, 2016, 37(4): 42-47.
GU Yonglei, ZHAO Guotang, WANG Hengyu, et al. Effect of Track Vibration Characteristics on Rail Corrugation of High Speed Railway[J]. China Railway Science, 2016, 37(4): 42-47.
[9] 苏乾坤, 何宁, 庞玲, 等. 400 km/h高速铁路路基地段CRTS Ⅲ型板式无砟轨道静力分析[J]. 高速铁路技术, 2022, 13(5): 20-24.
SU Qiankun, HE Ning, PANG Ling, et al. Static Analysis of CRTS Ⅲ Slab Ballastless Track for 400 km/h High-speed Railway in Subgrade Section[J]. High Speed Railway Technology, 2022, 13(5): 20-24.
[10] 陈伟, 戴焕云, 罗仁. 高速列车车轮高阶多边形对车辆动力学性能的影响[J]. 铁道车辆, 2014, 52(12): 4-8.
CHEN Wei, DAI Huanyun, LUO Ren. Influence of High-order Polygon of High-speed Train Wheels on Vehicle Dynamic Performance[J]. Rolling Stock, 2014, 52(12): 4-8.
[11] 金学松, 吴越, 梁树林, 等. 高速列车车轮多边形磨耗、机理、影响和对策分析[J]. 机械工程学报, 2020, 56(16): 118-136.
JIN Xuesong, WU Yue, LIANG Shulin, et al. Characteristics, Mechanism, Influences and Countermeasures of Polygonal Wear of High-speed Train Wheels[J]. Journal of Mechanical Engineering, 2020, 56(16): 118-136.
[12] THOMPSON D J, VINCENT N. Track Dynamic Behaviour at High Frequencies. Part 1: Theoretical Models and Laboratory Measurements[J]. Vehicle System Dynamics, 1995, 24(sup1): 86-99.
[13] SHENG X, ZHONG T, LI Y. Vibration and Sound Radiation of Slab High-speed Railway Tracks Subject to a Moving Harmonic Load[J]. Journal of Sound and Vibration, 2017, 395: 160-186.
[14] RYUE J, THOMPSON D J, WHITE P R, et al. Wave Reflection and Transmission Due to Defects in Infinite Structural Waveguides at High Frequencies[J]. Journal of Sound and Vibration, 2011, 330(8): 1737-1753.
[15] 盛曦. 轨道结构振动传递特性及控制措施研究[D]. 成都: 西南交通大学, 2019.
SHENG Xi. Study on Vibration Transmission Characteristics and Control Measures of Track Structure[D].Chengdu: Southwest Jiaotong University, 2019.
[16] 代丰. CRTS Ⅰ型双块式无砟轨道振动频域与波导特性研究[D]. 成都: 西南交通大学, 2016.
DAI Feng. Study on Vibration Frequency Domain and Waveguide Characteristics of CRTS I Double-block Ballastless Track[D].Chengdu: Southwest Jiaotong University, 2016.
[17] 邢俊. 基于声子晶体的地铁轨道弹性垫层波阻单元设计研究[D]. 成都: 西南交通大学, 2017.
XING Jun. Research on Wave Resistance Element Design of Metro Track Elastic Cushion Based on Phononic Crystals[D].Chengdu: Southwest Jiaotong University, 2017.
[18] 易强. 周期性铁路轨道结构弹性波传播特性及调控方法研究[D]. 成都: 西南交通大学, 2020.
YI Qiang. Study on Elastic Wave Propagation Characteristics and Control Methods of Periodic Railway Track Structure[D].Chengdu: Southwest Jiaotong University, 2020.
[19] 宋孔杰, 张蔚波, 牛军川. 功率流理论在柔性振动控制技术中的应用与发展[J]. 机械工程学报, 2003, 39(9): 23-28.
SONG Kongjie, ZHANG WeiBo, NIU Junchuan. Application and Development of Power Flow Theories in the Field of the Vibration Control for Flexible Systems[J]. Journal of Mechanical Engineering, 2003, 39(9): 23-28.
[20] LYON R H, MAIDANIK G. Power Flow between Linearly Coupled Oscillators[J]. The Journal of the Acoustical Society of America, 1962, 34(5): 623-639.
[21] GULIZIA C, PRICE A J. Power Flow between Strongly Coupled Oscillators[J]. The Journal of the Acoustical Society of America, 1977, 61(6): 1511-1515.
[22] 罗文俊, 雷晓燕, 练松良. 基于FE-SEA混合法的无砟轨道桥梁系统垂向振动分析[J]. 铁道学报, 2013, 35(8): 94-101.
LUO Wenjun, LEI Xiaoyan, LIAN Songliang. Analysis on Vibration of Ballastless Track-bridge System Based on Hybrid FE-SEA Method[J]. Journal of the China Railway Society, 2013, 35(8): 94-101.
[23] ZHANG Weiguo, WANG Aimin, VLAHOPOULOS N, et al. High-Frequency Vibration Analysis of Thin Elastic Plates under Heavy Fluid Loading by an Energy Finite Element Formulation[J]. Journal of Sound and Vibration, 2003, 263(1): 21-46.
[24] NAVAZI H M, NOKHBATOLFOGHAHAEI A, GHOBAD Y, et al. Experimental Measurement of Energy Density in a Vibrating Plate and Comparison with Energy Finite Element Analysis[J]. Journal of Sound and Vibration, 2016, 375: 289-307.
[25] ZHENG Xu, DAI Wenqiang, QIU Yi, et al. Prediction and Energy Contribution Analysis of Interior Noise in a High-speed Train Based on Modified Energy Finite Element Analysis[J]. Mechanical Systems and Signal Processing, 2019, 126: 439-457.

相似文献/References:

[1]王 旭.长大干线高速铁路自动化沉降监测系统研究[J].高速铁路技术,2017,8(06):68.[doi:10.12098/j.issn.1674-8247.2017.06.014]
 WANG Xu.Research of Automatic Settlement Monitoring System for Long Trunk High Speed Railway[J].HIGH SPEED RAILWAY TECHNOLOGY,2017,8(05):68.[doi:10.12098/j.issn.1674-8247.2017.06.014]
[2]陈兴海,王朋,于翠翠.鲁南某高速铁路岩溶塌陷风险评估及防治对策[J].高速铁路技术,2022,13(05):79.[doi:10.12098/j.issn.1674-8247.2022.05.016]
 CHEN Xinghai,WANG Peng,YU Cuicui.Risk Assessment and Countermeasures for Karst Collapse of a Highspeed Railway in Southern Shandong[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(05):79.[doi:10.12098/j.issn.1674-8247.2022.05.016]
[3]林奎.成自铁路引入天府机场线路方案比选回顾[J].高速铁路技术,2022,13(05):91.[doi:10.12098/j.issn.1674-8247.2022.05.018]
 LIN Kui.Review of Comparison and Selection of Route Plans for the Connection of the Chengdu-Zigong High-speed Railway to Tianfu Airport[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(05):91.[doi:10.12098/j.issn.1674-8247.2022.05.018]
[4]周宏,宋元胜.高速铁路引入铁路枢纽线路选线研究[J].高速铁路技术,2022,13(05):96.[doi:10.12098/j.issn.1674-8247.2022.05.019]
 ZHOU Hong,SONG Yuansheng.Study on Route Selection for Introducing High-speed Railways into Railway Hubs[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(05):96.[doi:10.12098/j.issn.1674-8247.2022.05.019]
[5]陈 浩.基于动力分析的高速铁路钢轨磨耗预测方法研究[J].高速铁路技术,2022,13(06):17.[doi:10.12098/j.issn.1674-8247.2022.06.004 ]
 CHEN Hao.Study on Prediction Method of Rail Wear of High-speed Railway Based on Dynamic Analysis[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(05):17.[doi:10.12098/j.issn.1674-8247.2022.06.004 ]
[6]董月龙.金建高速铁路大中河流水文计算分析[J].高速铁路技术,2022,13(06):79.[doi:10.12098/j.issn.1674-8247.2022.06.015 ]
 DONG Yuelong.Hydrological Calculation and Analysis of Large and Medium Rivers along Jinhua-Jiande High-speed Railway[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(05):79.[doi:10.12098/j.issn.1674-8247.2022.06.015 ]
[7]王佩雷.复杂艰险山区高速铁路建设四电接口管理技术研究[J].高速铁路技术,2023,14(01):38.[doi:10.12098/j.issn.1674-8247.2023.01.007]
 WANG Peilei.A Study on Interface Management Technology of Communication, Signal,Electrical,and Electrification Systems for High-speed Railway Construction in Challenging Mountain Areas[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(05):38.[doi:10.12098/j.issn.1674-8247.2023.01.007]
[8]戴龙钦,余少华,蔡康.合福高速铁路闽赣段防洪对策分析[J].高速铁路技术,2023,14(01):91.[doi:10.12098/j.issn.1674-8247.2023.01.017]
 DAI Longqin,YU Shaohua,CAI Kang.Analysis of Flood Control Measures for Fujian-Jiangxi Section of Hefei-Fuzhou High-speed Railway[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(05):91.[doi:10.12098/j.issn.1674-8247.2023.01.017]
[9]尹航.沪渝蓉高速铁路(宜涪段)马鹿箐隧道选线研究[J].高速铁路技术,2023,14(01):106.[doi:10.12098/j.issn.1674-8247.2023.01.020]
 YIN Hang.A Study on Route Selection of Maluqing Tunnel of Shanghai-Chongqing-Chengdu High-speed Railway(Yichang-Fuling Section)[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(05):106.[doi:10.12098/j.issn.1674-8247.2023.01.020]
[10]任俊桦.基于类比分析的高速铁路和城际铁路运量预测研究[J].高速铁路技术,2023,14(01):54.[doi:10.12098/j.issn.1674-8247.2023.01.010]
 REN Junhua.A Study on Forecast of Traffic Volume for High-speed Railway and Intercity Railway Based on Analog Analysis[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(05):54.[doi:10.12098/j.issn.1674-8247.2023.01.010]
[11]陈志远,华正兴.高速铁路无砟轨道扣件自动化安装车研究[J].高速铁路技术,2024,15(05):119.[doi:10.12098/j.issn.1674-8247.2024.05.020]
 CHEN Zhiyuan,HUA Zhengxing.Study on Automated Installation Vehicle for Fastener Systems in Ballastless High-speed Railway Tracks[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(05):119.[doi:10.12098/j.issn.1674-8247.2024.05.020]

备注/Memo

备注/Memo:
收稿日期:2024-03-25
作者简介:付娜(1983-),女,副教授。
基金项目:2023年四川省大学生创新创业训练计划省级项目(S202311553002); 成都纺织高等专科学校人才资助项目(RCXM22002); 成都纺织高等专科学校科研项目重点项目(2022fzlkb02)
更新日期/Last Update: 2024-10-30