[1]黄晖,张斌.基于决策树模型的轨道服役状态预警研究[J].高速铁路技术,2024,15(05):53-58.[doi:10.12098/j.issn.1674-8247.2024.05.009]
 HUANG Hui,ZHANG Bin.Study on Early Warning of Track Service Conditions Based on Decision Tree Model[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(05):53-58.[doi:10.12098/j.issn.1674-8247.2024.05.009]
点击复制

基于决策树模型的轨道服役状态预警研究()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
15卷
期数:
2024年05期
页码:
53-58
栏目:
研究创新
出版日期:
2024-10-30

文章信息/Info

Title:
Study on Early Warning of Track Service Conditions Based on Decision Tree Model
文章编号:
1674-8247(2024)05-0053-06
作者:
黄晖张斌
(1. 中铁二十四局集团南昌铁路工程有限公司, 南昌 330002;2. 华东交通大学轨道交通基础设施性能监测与保障国家重点实验室, 南昌330013)
Author(s):
HUANG HuiZHANG Bin
(1.Nanchang Railway Engineering Co. ,Ltd. of China Railway Twenty-fourth Bureau Group Co. ,Ltd. , Nanchang 330002 ,China; 2. State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure, East China Jiaotong University, Nanc
关键词:
高速铁路服役状态决策树温度梯度预警模型
Keywords:
high-speed railwayservice conditionsdecision treetemperature gradientearly warning model
分类号:
U216.3
DOI:
10.12098/j.issn.1674-8247.2024.05.009
文献标志码:
A
摘要:
随着高速铁路服役时间的增加,各类轨道病害不断发生,尤其是高温天气引起无砟轨道结构服役状 态持续劣化,出现严重结构伤损问题。以工程应用为导向,建立可靠的轨道结构服役状态预警模型,提出判别 服役状态的预警方法,是实现铁路运输安全生产的重要保障措施之一。本文通过在某线路搭建服役环境和轨 道板温度在线监测系统,将温度梯度出现概率等于0. 3%时的取值作为轨道板温度梯度预警限值,基于人工 智能算法决策树模型进行轨道结构服役状态预警研究。研究结果表明:(1)采用决策树模型可以有效预测轨 道结构服役状态,实现轨道板温度梯度的质量等级划分;(2)轨道服役状态预警结果准确性与样本数量密切 相关,丰富监测样本数据库,将会更全面精准地预测轨道结构异常状态,以便保障轨道养护维修的及时性。
Abstract:
With the increasing service time of high-speed railways,various track defects continuously emerge,particularly severe structural damage caused by elevated temperatures,which would affect the service conditions of ballastless track. Establishing a reliable early warning model for track service conditions and developing a method for identifying such conditions are among the essential measures for ensuring the operation safety of railway transport. For the purpose of this study,an online monitoring system was set up along a railway for on-line monitoring of the track environment and slab temperature,and the value at the probability of 0. 3% for temperature gradient occurrence was taken as the threshold for slab temperature gradient warnings. Then an AI algorithm decision tree was employed to construct the early warning model for track structure service conditions. The findings indicate that:(1)The decision tree model can effectively predict track structure service conditions,enabling the determination of slab temperature gradient quality levels. (2)The accuracy of early warning for track service conditions is strongly correlated with the quantity of samples in the database,and enhancing the richness of monitoring sample database will enable a more comprehensive and precise prediction of abnormal track structure conditions,ensuring timely track maintenance and repair.

参考文献/References:

[1] 张加奇. 高速铁路道岔可动心轨辙叉拆分修技术研究及应用[J]. 高速铁路技术, 2022, 13(3): 39 - 44.
ZHANG Jiaqi. Research and Application of Disassembly and Repair Technology for Movable Point Frog of High-speed Railway Turnou[t J]. High Speed Railway Technology, 2022, 13(3): 39 - 44.
[2] 李兆洋, 刘红娇, 李毅, 等. 基于图像处理的高速铁路轨道巡检 系统[J]. 高速铁路技术, 2023, 14(3): 21 - 26.
LI Zhaoyang, LIU Hongjiao, LI Yi, et al. A High-speed Railway Track Inspection System Based on Image Processing[J]. High Speed Railway Technology, 2023, 14(3): 21 - 26.
[3] 殷明旻, 向芬, 乔建春, 等. 路基段双块式无砟轨道在线重构整 治研究与实践[J]. 高速铁路技术, 2022, 13(5): 102 - 106.
YIN Mingmin, XIANG Fen, QIAO Jianchun, et al. Research and Practice of On-line Reconstruction of Bi-block Ballastless Track in Subgrade Section[J]. High Speed Railway Technology, 2022, 13(5): 102 - 106.
[4] 谭社会. 高温条件下CRTS Ⅱ型板式无砟轨道变形整治措施研究 [J]. 铁道建筑, 2016, 56(5): 23 - 27.
TAN Shehui. Study on Deformation Treatment Measures for CRTS Ⅱ Slab-type Ballastless Track in High Temperature Condition [J]. Railway Engineering, 2016, 56(5): 23 - 27.
[5] 徐桂弘, 杨斌, 李耀东, 等. 双块式无砟轨道轨枕裂纹内动水 压力特性研究[J]. 贵州大学学报( 自然科学版), 2017, 34(6): 115 - 120.
XU Guihong, YANG Bin, LI Yaodong, et al. Research on Crack Dynamic Water Pressure Characteristics of Twin-block Track Sleeper[J]. Journal of Guizhou University (Natural Sciences), 2017, 34(6): 115 - 120.
[6] 刘学毅, 李佳莉, 康维新, 等. 无砟轨道温度简便计算及极端天 气影响分析[J]. 西南交通大学学报, 2017, 52(6): 1037 - 1045, 1060.
LIU Xueyi, LI Jiali, KANG Weixin, et al. Simplified Calculation of Temperature in Concrete Slabs of Ballastless Track and Influence of Extreme Weather[J]. Journal of Southwest Jiaotong University, 2017, 52(6): 1037 - 1045, 1060.
[7] 刘付山, 曾志平, 吴斌, 等. 高速铁路连续式无砟轨道温度场分 析[J]. 铁道学报, 2016, 38(12): 86 - 93.
LIU Fushan, ZENG Zhiping, WU Bin, et al. Study on Temperature Field of Continuous Ballastless Track for High-speed Railway[J]. Journal of the China Railway Society, 2016, 38(12): 86 - 93.
[8] 欧祖敏, 孙璐, 程群群. 高速铁路无砟轨道温度场简化计算方法 [J]. 浙江大学学报( 工学版), 2015, 49(3): 482 - 487.
OU Zumin, SUN Lu, CHENG Qunqun. Simplified Calculation of Temperature Field in High-speed Railway Ballastless Track Structure [J]. Journal of Zhejiang University (Engineering Science), 2015, 49(3): 482 - 487.
[9] 苏成光. 路桥过渡段无砟轨道长期温度梯度试验研究[J]. 铁道 工程学报, 2022, 39(2): 56 - 61.
SU Chengguang. Long-term Temperature Gradient Test of Ballastless Track on Bridge-subgrade Transition Section[J]. Journal of Railway Engineering Society, 2022, 39(2): 56 - 61.
[10] 李健, 赵坪锐, 万章博, 等. 双块式无砟轨道温度场试验研究和 数值分析[J]. 中国科学: 技术科学, 2014, 44(7): 729 - 735.
LI Jian, ZHAO Pingrui, WAN Zhangbo, et al. Experimental Research and Numerical Analysis of Temperature Field on Bi-block Ballastless Track[J]. Scientia Sinica (Technologica), 2014, 44(7): 729 - 735.
[11] 尤明熙, 高亮, 赵国堂, 等. 板式无砟轨道温度场和温度梯度监 测试验分析[J]. 铁道建筑, 2016(5): 1 - 5, 9.
YOU Mingxi, GAO Liang, ZHAO Guotang, et al. Analysis of Monitoring Test for Slab-type Ballastless Track Temperature Field and Temperature Gradient[J]. Railway Engineering, 2016(5): 1 - 5, 9.
[12] 闫斌, 刘施, 戴公连, 等. 我国典型地区无砟轨道非线性温度梯 度及温度荷载模式[J]. 铁道学报, 2016, 38(8): 81 - 86.
YAN Bin, LIU Shi, DAI Gonglian, et al. Nonlinear Temperature Gradient and Temperature Load Mode of Ballastless Track in Typical Areas of China[J]. Journal of the China Railway Society, 2016, 38(8): 81 - 86.
[13] 张鹏飞, 雷晓燕, 高亮, 等. 高速铁路桥上无缝线路静态监测数 据分析[J]. 铁道工程学报, 2016, 33(11): 40 - 44, 62.
ZHANG Pengfei, LEI Xiaoyan, GAO Liang, et al. Analysis of the Static Monitoring Data for CWR on High-speed Railway Bridge[J]. Journal of Railway Engineering Society, 2016, 33(11): 40 - 44, 62.
[14] 王玉泽, 王森荣. 高速铁路无砟轨道监测技术[J]. 铁道标准设计, 2015, 59(8): 1 - 9.
WANG Yuze, WANG Senrong. Monitoring Technique for Ballastless Track of High-speed Railway[J]. Railway Standard Design, 2015, 59(8): 1 - 9.
[15] 郭云祺, 李再帏, 何越磊, 等. 基于支持向量机的CRTS Ⅱ型板 式无砟轨道板正温度梯度预警方法[J]. 铁道科学与工程学报, 2018, 15(9): 2209 - 2216.
GUO Yunqi, LI Zaiwei, HE Yuelei, et al. A Novel Method of Forewarning the Positive Temperature Gradient of CRTS Ⅱ Ballastless Track Based on Support Vector Machine[J]. Journal of Railway Science and Engineering, 2018, 15(9): 2209 - 2216.

相似文献/References:

[1]王 旭.长大干线高速铁路自动化沉降监测系统研究[J].高速铁路技术,2017,8(06):68.[doi:10.12098/j.issn.1674-8247.2017.06.014]
 WANG Xu.Research of Automatic Settlement Monitoring System for Long Trunk High Speed Railway[J].HIGH SPEED RAILWAY TECHNOLOGY,2017,8(05):68.[doi:10.12098/j.issn.1674-8247.2017.06.014]
[2]陈兴海,王朋,于翠翠.鲁南某高速铁路岩溶塌陷风险评估及防治对策[J].高速铁路技术,2022,13(05):79.[doi:10.12098/j.issn.1674-8247.2022.05.016]
 CHEN Xinghai,WANG Peng,YU Cuicui.Risk Assessment and Countermeasures for Karst Collapse of a Highspeed Railway in Southern Shandong[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(05):79.[doi:10.12098/j.issn.1674-8247.2022.05.016]
[3]林奎.成自铁路引入天府机场线路方案比选回顾[J].高速铁路技术,2022,13(05):91.[doi:10.12098/j.issn.1674-8247.2022.05.018]
 LIN Kui.Review of Comparison and Selection of Route Plans for the Connection of the Chengdu-Zigong High-speed Railway to Tianfu Airport[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(05):91.[doi:10.12098/j.issn.1674-8247.2022.05.018]
[4]周宏,宋元胜.高速铁路引入铁路枢纽线路选线研究[J].高速铁路技术,2022,13(05):96.[doi:10.12098/j.issn.1674-8247.2022.05.019]
 ZHOU Hong,SONG Yuansheng.Study on Route Selection for Introducing High-speed Railways into Railway Hubs[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(05):96.[doi:10.12098/j.issn.1674-8247.2022.05.019]
[5]陈 浩.基于动力分析的高速铁路钢轨磨耗预测方法研究[J].高速铁路技术,2022,13(06):17.[doi:10.12098/j.issn.1674-8247.2022.06.004 ]
 CHEN Hao.Study on Prediction Method of Rail Wear of High-speed Railway Based on Dynamic Analysis[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(05):17.[doi:10.12098/j.issn.1674-8247.2022.06.004 ]
[6]董月龙.金建高速铁路大中河流水文计算分析[J].高速铁路技术,2022,13(06):79.[doi:10.12098/j.issn.1674-8247.2022.06.015 ]
 DONG Yuelong.Hydrological Calculation and Analysis of Large and Medium Rivers along Jinhua-Jiande High-speed Railway[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(05):79.[doi:10.12098/j.issn.1674-8247.2022.06.015 ]
[7]王佩雷.复杂艰险山区高速铁路建设四电接口管理技术研究[J].高速铁路技术,2023,14(01):38.[doi:10.12098/j.issn.1674-8247.2023.01.007]
 WANG Peilei.A Study on Interface Management Technology of Communication, Signal,Electrical,and Electrification Systems for High-speed Railway Construction in Challenging Mountain Areas[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(05):38.[doi:10.12098/j.issn.1674-8247.2023.01.007]
[8]戴龙钦,余少华,蔡康.合福高速铁路闽赣段防洪对策分析[J].高速铁路技术,2023,14(01):91.[doi:10.12098/j.issn.1674-8247.2023.01.017]
 DAI Longqin,YU Shaohua,CAI Kang.Analysis of Flood Control Measures for Fujian-Jiangxi Section of Hefei-Fuzhou High-speed Railway[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(05):91.[doi:10.12098/j.issn.1674-8247.2023.01.017]
[9]尹航.沪渝蓉高速铁路(宜涪段)马鹿箐隧道选线研究[J].高速铁路技术,2023,14(01):106.[doi:10.12098/j.issn.1674-8247.2023.01.020]
 YIN Hang.A Study on Route Selection of Maluqing Tunnel of Shanghai-Chongqing-Chengdu High-speed Railway(Yichang-Fuling Section)[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(05):106.[doi:10.12098/j.issn.1674-8247.2023.01.020]
[10]任俊桦.基于类比分析的高速铁路和城际铁路运量预测研究[J].高速铁路技术,2023,14(01):54.[doi:10.12098/j.issn.1674-8247.2023.01.010]
 REN Junhua.A Study on Forecast of Traffic Volume for High-speed Railway and Intercity Railway Based on Analog Analysis[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(05):54.[doi:10.12098/j.issn.1674-8247.2023.01.010]

备注/Memo

备注/Memo:
收稿日期:2023 -05 -08
作者简介:黄晖(1985 -),男,工程师。
基金项目:国家自然科学基金项目(52468062);江西省重点研发计划“揭榜挂帅”项目(20223 BBE51009);中国铁路广州局集团有限公司科研项目(2021 K093 -Z)
更新日期/Last Update: 2024-10-30