[1]颜永逸.高速铁路斜拉桥健康监测系统应用与分析[J].高速铁路技术,2024,15(05):72-77.[doi:10.12098/j.issn.1674-8247.2024.05.012]
 YAN Yongyi.Application and Data Analysis of Health Monitoring System for High-speed Railway Cable-stayed Bridges[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(05):72-77.[doi:10.12098/j.issn.1674-8247.2024.05.012]
点击复制

高速铁路斜拉桥健康监测系统应用与分析()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
15卷
期数:
2024年05期
页码:
72-77
栏目:
研究创新
出版日期:
2024-10-30

文章信息/Info

Title:
Application and Data Analysis of Health Monitoring System for High-speed Railway Cable-stayed Bridges
文章编号:
1674-8247(2024)05-0072-06
作者:
颜永逸
(中铁第四勘察设计院集团有限公司, 武汉 430063)
Author(s):
YAN Yongyi
(China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063, China)
关键词:
高速铁路 斜拉桥 健康监测
Keywords:
high-speed railway cable-stayed bridge health monitoring
分类号:
U448.27
DOI:
10.12098/j.issn.1674-8247.2024.05.012
文献标志码:
A
摘要:
昌赣客运专线赣江特大桥是我国首座300 m级跨度的无砟轨道高速铁路斜拉桥。为了掌握高速铁路斜拉桥的服役性能,验算设计理论,对该桥设计并实施了健康监测系统,并对大桥的挠度、支座位移、振动和应变参数进行了分析,并对结构状态开展评估。结果表明:(1)主梁挠度变化和梁端位移变化均小于安全限值,结构变形正常;(2)主跨跨中竖向振动加速度幅值最大值为0.121 m/s2,小于车桥耦合分析的竖向加速度幅值0.125 m/s2,梁体的振动性能及运营舒适度较好,结构基频与设计相符;(3)主梁应变受温度影响,总体变化幅值约64 με,转换应力为13.44 MPa,小于设计限值,结构受力安全。赣江特大桥目前整体状态正常,服役性能良好。
Abstract:
Ganjiang Super-large Bridge on Nanchang-Ganzhou Passenger Dedicated Line, with a span of over 300 m, is the first ballastless track high-speed railway cable-stayed bridge in China. To investigate the service performance of high-speed railway cable-stayed bridges and verify its design theory, a structural health monitoring system was designed and implemented for the bridge. The deflection, support displacement, vibration, and strain parameters of the bridge were analyzed, and the structural state was evaluated by the system. The results demonstrate that:(1)the deflection change of the main beam and the displacement change of the beam end are both less than the safety limit, indicating that the structural deformation is normal.(2)The maximum vertical vibration acceleration amplitude in the main span is 0.121 m/s2, which is smaller than that in the vehicle bridge coupling analysis of 0.125 m/s2. The beam is of good vibration performance and operational comfort, and its structural fundamental frequency is consistent with the design.(3)The strain of the main beam is affected by the temperature, and the overall amplitude of the change is about 64 με, The conversion stress is 13.44 MPa, which is less than the design limit, indicating structural stress safety. The above results indicate that the overall condition of the Ganjiang Grand Bridge is in normal health and good service performance condition.

参考文献/References:

[1] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2): 1-97.
Editorial Department of China Journal of Highway and Transport. Review on China's Bridge Engineering Research: 2021[J]. China Journal of Highway and Transport, 2021, 34(2): 1-97.
[2] 陈良江, 阎武通. 我国铁路桥梁建造技术的成就与展望[J]. 高速铁路技术, 2022, 13(4): 1-7.
CHEN Liangjiang, Yan Wutong. Achievements and Prospects of Railway Bridge Construction Technology in China[J]. High Speed Railway Technology, 2022, 13(4): 1-7.
[3] 吴刚, 陈志强, 党纪. 桥梁智慧运维[M]. 北京: 人民交通出版社, 2022.
WU Gang, CHEN Zhiqiang, DANG Ji. Intelligent Maintenance of Bridges[M]. Beijing: China Communications Press, 2022.
[4] 贺拴海, 赵祥模, 马建, 等. 公路桥梁检测及评价技术综述[J]. 中国公路学报, 2017, 30(11): 63-80.
HE Shuanhai, ZHAO Xiangmo, MA Jian, et al. Review of Highway Bridge Inspection and Condition Assessment[J]. China Journal of Highway and Transport, 2017, 30(11): 63-80.
[5] 李国强, 魏金波, 张开莹. 考虑抗弯刚度影响的弹性支承索力动力检测理论与试验研究[J]. 土木工程学报, 2011, 44(3): 79-84.
LI Guoqiang, WEI Jinbo, ZHANG Kaiying. Theoretical and Experimental Study for Cable Tension Estimation by Vibration Method Accounting for Flexural Stiffness and Flexibility Support[J]. China Civil Engineering Journal, 2011, 44(3): 79-84.
[6] 朱宏平, 余璟, 张俊兵. 结构损伤动力检测与健康监测研究现状与展望[J]. 工程力学, 2011, 28(2): 1-11, 17.
ZHU Hongping, YU Jing, ZHANG Junbing. A Summary Review and Advantages of Vibration-based Damage Identification Methods in Structural Health Monitoring[J]. Engineering Mechanics, 2011, 28(2): 1-11, 17.
[7] 王凌波, 王秋玲, 朱钊, 等. 桥梁健康监测技术研究现状及展望[J]. 中国公路学报, 2021, 34(12): 25-45.
WANG Lingbo, WANG Qiuling, ZHU Zhao, et al. Current Status and Prospects of Research on Bridge Health Monitoring Technology[J]. China Journal of Highway and Transport, 2021, 34(12): 25-45.
[8] 曹阳梅. 大跨度铁路斜拉桥索力快速识别方法研究[J]. 铁道标准设计, 2024, 68(4): 116-122.
CAO Yangmei. Research on Fast Identification Method of Cable Force of Long-span Railway Cable-stayed Bridge[J]. Railway Standard Design, 2024, 68(4): 116-122.
[9] 颜永逸, 杨国静, 宋晓东, 等. 高速铁路大跨度混凝土拱桥变形监测与分析[J]. 土木与环境工程学报(中英文), 2022, 44(3): 79-85.
YAN Yongyi, YANG Guojing, SONG Xiaodong, et al. Deformation Monitoring and Analysis of Long Span High Speed Concrete Arch Railway Bridge[J]. Journal of Civil and Environmental Engineering, 2022,44(3): 79-85.
[10] 吴俐滢, 杨涛远, 翁顺, 等. 基于综合层次分析法的赣江特大桥安全评估[J]. 土木工程与管理学报, 2022, 39(2): 133-140.
WU Liying, YANG Taoyuan, WENG Shun, et al. Safety Assessment of Ganjiang Bridge of Chang Gan Railway Based on Comprehensive Analytic Hierarchy Process[J]. Journal of Civil Engineering and Management, 2022, 39(2): 133-140.
[11] 单德山, 罗凌峰, 李乔. 桥梁健康监测2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43(S1): 129-134.
SHAN Deshan, LUO Lingfeng, LI Qiao. State-of-the-art Review of the Bridge Health Monitoring in 2020[J]. Journal of Civil and Environmental Engineering, 2021, 43(S1): 129-134.
[12] 孙利民, 尚志强, 夏烨. 大数据背景下的桥梁结构健康监测研究现状与展望[J]. 中国公路学报, 2019, 32(11): 1-20.
SUN Limin, SHANG Zhiqiang, XIA Ye. Development and Prospect of Bridge Structural Health Monitoring in the Context of Big Data[J]. China Journal of Highway and Transport, 2019, 32(11): 1-20.
[13] 翁顺, 吴俐滢, 朱宏平, 等. 基于模糊聚类的高速列车车速识别[J].高速铁路技术, 2022, 13(4): 13-23, 29.
WENG Shun, WU Liying, ZHU Hongping, et al. Speed Recognition of High-speed Train Based on Fuzzy Clustering[J]. High Speed Railway Technology, 2022, 13(4): 13-23, 29.

相似文献/References:

[1]王 旭.长大干线高速铁路自动化沉降监测系统研究[J].高速铁路技术,2017,8(06):68.[doi:10.12098/j.issn.1674-8247.2017.06.014]
 WANG Xu.Research of Automatic Settlement Monitoring System for Long Trunk High Speed Railway[J].HIGH SPEED RAILWAY TECHNOLOGY,2017,8(05):68.[doi:10.12098/j.issn.1674-8247.2017.06.014]
[2]陈兴海,王朋,于翠翠.鲁南某高速铁路岩溶塌陷风险评估及防治对策[J].高速铁路技术,2022,13(05):79.[doi:10.12098/j.issn.1674-8247.2022.05.016]
 CHEN Xinghai,WANG Peng,YU Cuicui.Risk Assessment and Countermeasures for Karst Collapse of a Highspeed Railway in Southern Shandong[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(05):79.[doi:10.12098/j.issn.1674-8247.2022.05.016]
[3]林奎.成自铁路引入天府机场线路方案比选回顾[J].高速铁路技术,2022,13(05):91.[doi:10.12098/j.issn.1674-8247.2022.05.018]
 LIN Kui.Review of Comparison and Selection of Route Plans for the Connection of the Chengdu-Zigong High-speed Railway to Tianfu Airport[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(05):91.[doi:10.12098/j.issn.1674-8247.2022.05.018]
[4]周宏,宋元胜.高速铁路引入铁路枢纽线路选线研究[J].高速铁路技术,2022,13(05):96.[doi:10.12098/j.issn.1674-8247.2022.05.019]
 ZHOU Hong,SONG Yuansheng.Study on Route Selection for Introducing High-speed Railways into Railway Hubs[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(05):96.[doi:10.12098/j.issn.1674-8247.2022.05.019]
[5]陈 浩.基于动力分析的高速铁路钢轨磨耗预测方法研究[J].高速铁路技术,2022,13(06):17.[doi:10.12098/j.issn.1674-8247.2022.06.004 ]
 CHEN Hao.Study on Prediction Method of Rail Wear of High-speed Railway Based on Dynamic Analysis[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(05):17.[doi:10.12098/j.issn.1674-8247.2022.06.004 ]
[6]董月龙.金建高速铁路大中河流水文计算分析[J].高速铁路技术,2022,13(06):79.[doi:10.12098/j.issn.1674-8247.2022.06.015 ]
 DONG Yuelong.Hydrological Calculation and Analysis of Large and Medium Rivers along Jinhua-Jiande High-speed Railway[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(05):79.[doi:10.12098/j.issn.1674-8247.2022.06.015 ]
[7]王佩雷.复杂艰险山区高速铁路建设四电接口管理技术研究[J].高速铁路技术,2023,14(01):38.[doi:10.12098/j.issn.1674-8247.2023.01.007]
 WANG Peilei.A Study on Interface Management Technology of Communication, Signal,Electrical,and Electrification Systems for High-speed Railway Construction in Challenging Mountain Areas[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(05):38.[doi:10.12098/j.issn.1674-8247.2023.01.007]
[8]戴龙钦,余少华,蔡康.合福高速铁路闽赣段防洪对策分析[J].高速铁路技术,2023,14(01):91.[doi:10.12098/j.issn.1674-8247.2023.01.017]
 DAI Longqin,YU Shaohua,CAI Kang.Analysis of Flood Control Measures for Fujian-Jiangxi Section of Hefei-Fuzhou High-speed Railway[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(05):91.[doi:10.12098/j.issn.1674-8247.2023.01.017]
[9]尹航.沪渝蓉高速铁路(宜涪段)马鹿箐隧道选线研究[J].高速铁路技术,2023,14(01):106.[doi:10.12098/j.issn.1674-8247.2023.01.020]
 YIN Hang.A Study on Route Selection of Maluqing Tunnel of Shanghai-Chongqing-Chengdu High-speed Railway(Yichang-Fuling Section)[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(05):106.[doi:10.12098/j.issn.1674-8247.2023.01.020]
[10]任俊桦.基于类比分析的高速铁路和城际铁路运量预测研究[J].高速铁路技术,2023,14(01):54.[doi:10.12098/j.issn.1674-8247.2023.01.010]
 REN Junhua.A Study on Forecast of Traffic Volume for High-speed Railway and Intercity Railway Based on Analog Analysis[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(05):54.[doi:10.12098/j.issn.1674-8247.2023.01.010]

备注/Memo

备注/Memo:
收稿日期:2024-05-14
作者简介:颜永逸,(1993-),男,工程师。
基金项目:中铁第四勘察设计院集团有限公司科技研究开发计划课题(2022K086; KY20230145)
更新日期/Last Update: 2024-10-30