[1]唐宇豪,付开隆,赵文龙,等.某高速铁路弱膨胀黏性土质路堑边坡变形演化特征[J].高速铁路技术,2024,15(05):106-112.[doi:10.12098/j.issn.1674-8247.2024.05.018]
 TANG Yuhao,FU Kailong,ZHAO Wenlong,et al.Evolution Characteristics of Deformation in Weak Expansive Clayey Slopes of a High-speed Railway Cutting[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(05):106-112.[doi:10.12098/j.issn.1674-8247.2024.05.018]
点击复制

某高速铁路弱膨胀黏性土质路堑边坡变形演化特征()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
15卷
期数:
2024年05期
页码:
106-112
栏目:
勘察设计
出版日期:
2024-10-30

文章信息/Info

Title:
Evolution Characteristics of Deformation in Weak Expansive Clayey Slopes of a High-speed Railway Cutting
文章编号:
1674-8247(2024)05-0106-07
作者:
唐宇豪付开隆赵文龙王仕兴
(中铁二院工程集团有限责任公司, 成都 610031)
Author(s):
TANG YuhaoFU KailongZHAO WenlongWANG Shixing
(China Railway Eryuan Engineering Group Co.,Ltd.,Chengdu 610031,China)
关键词:
高速铁路 土质路堑边坡 干涉测量技术 地震映像法 监测 承载力 翘板作用
Keywords:
high-speed railway soil cutting slope interferometric measurement technology seismic imaging method monitoring bearing capacity see-saw effect
分类号:
U238; U213.1
DOI:
10.12098/j.issn.1674-8247.2024.05.018
文献标志码:
A
摘要:
山区及丘陵地带高速铁路的修建易引发土质边坡位移变形,严重危害高速铁路安全运营。为研究广西某高速铁路黏性土质路堑边坡变形演化特征、探究边坡变形各项研究方法,本文利用星载合成孔径雷达干涉测量技术圈定边坡形变区域,以物探地震映像法时-频综合分析技术明确异常范围进而指导钻孔布置,辅以监测工作,详细探究研究区土质路堑边坡沉降变形机制。研究结果表明:(1)各项工作均可见由降雨导致小里程位置地基承载力下降,出现严重位移变形,受边坡整体性影响,中间里程位置岩土界面浅,以此为基点形成“翘板作用”引发大里程位置出现轻微上拱;(2)以综合方法为手段,提出以承载力和“翘板作用”两者为诱因共同影响土质路堑边坡位移趋势,为研究区病害整治提供了详实的基础资料,并可作为类似工程参考。
Abstract:
The construction of high-speed railways in mountainous and hilly areas can easily induce displacement deformation of soil slopes, posing a severe threat to the operation safety of high-speed railways. To investigate the evolution characteristics of deformation of clayey cutting slopes along a high-speed railway in Guangxi, China, and to explore various methods for studying slope deformation, this paper employed satellite-based Synthetic Aperture Radar(SAR)Interferometry to delineate deformation zones of the slopes. Furthermore, the time-frequency integrated analysis technique of geophysical seismic imaging was used to pinpoint abnormal areas guiding the placement of boreholes, complemented by monitoring activities, to meticulously examine the settlement and deformation mechanisms of the soil cutting slopes in the study area. The study findings reveal that:(1)Rainfall-induced reductions in foundation bearing capacity at the starting chainage position result in severe displacement deformation, with the overall slope integrity influencing a shallow rock-soil interface at the mid-chainage position. This serves as a pivot point for a “see-saw effect,” causing minor upward arching at the ending chainage position.(2)By employing a comprehensive approach, this study proposes that both bearing capacity reduction and the “see-saw effect” act as concurrent triggers influencing the displacement trend of the earth cutting slopes. These findings provide detailed foundational data for the remediation of issues in the study area and can serve as a reference for similar projects.

参考文献/References:

[1] 刘国栋. 降雨影响下黄土边坡挡土墙工程的后评价研究[D]. 西安:长安大学, 2023.
LIU Guodong. Post-evaluation Research on Retaining Wall Engineering of Loess Slopes under the Influence of Rainfall [D]. Xi'an: Chang'an University, 2023.
[2] 田辉, 龚建辉, 朱曦. 高陡边坡桥台锥坡垮塌病害成因及加固措施[J]. 高速铁路技术, 2022, 13(2): 100-103.
TIAN Hui, GONG Jianhui, ZHU Xi. Cause of Collapse and Reinforcement of Truncated Conical Slope of the Abutment on High and Steep Slopes[J]. High Speed Railway Technology, 2022, 13(2): 100-103.
[3] 唐光民, 戴可人, 卓冠晨, 等. 基于InSAR相位梯度叠加的毛尔盖库岸滑坡隐患快速识别[J]. 地震工程学报, 2023, 45(5): 1096-1105.
TANG Guangmin, DAI Keren, ZHUO Guanchen, et al. Rapid Identification of Potential Landslides in the Maoergai Reservoir Based on InSAR Phase Gradient Stacking[J]. China Earthquake Engineering Journal, 2023, 45(5):
[4] 崔维孝. 雅万高速铁路泥页岩路堑边坡工程对策研究[J].高速铁路技术, 2022, 13(4): 99-103.
CUI Weixiao. Study on Engineering Countermeasures for Shale Cutting Slope of Jakarta-Bandung High-speed Railway[J]. High Speed Railway Technology, 2022, 13(4): 99-103.
[5] 张建, 李江腾, 林杭, 等. 降雨触发浅层坡体失稳的迟滞现象及其与土质参数的关联性[J]. 中南大学学报(自然科学版), 2018, 49(1): 150-157.
ZHANG Jian, LI Jiangteng, LIN Hang, et al. Delay Phenomenon of Shallow Slope Failure Triggered by Rainfall and Its Correlation with Soil Parameters[J]. Journal of Central South University(Science and Technology), 2018, 49(1): 150-157.
[6] 张浩, 杨晓琳, 马海涛, 等. 基于地基干涉雷达的含水土质边坡变形监测研究[J]. 北京理工大学学报, 2023, 43(11): 1154-1163.
ZHANG Hao, YANG Xiaolin, MA Haitao, et al. Deformation Monitoring of Water Bearing Soil Slope Based on Ground Interferometric Radar[J]. Transactions of Beijing Institute of Technology, 2023, 43(11): 1154-1163.
[7] 戴可人, 沈月, 吴明堂, 等. 联合InSAR与无人机航测的白鹤滩库区蓄水前地灾隐患广域识别[J]. 测绘学报, 2022, 51(10): 2069-2082.
DAI Keren, SHEN Yue, WU Mingtang, et al. Identification of Potential Landslides in Baihetan Dam Area before the Impoundment by Combining InSAR and UAV Survey[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2069-2082.
[8] 葛大庆, 戴可人, 郭兆成, 等. 重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J]. 武汉大学学报(信息科学版), 2019, 44(7): 949-956.
GE Daqing, DAI Keren, GUO Zhaocheng, et al. Early Identification of Serious Geological Hazards with Integrated Remote Sensing Technologies: Thoughts and Recommendations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 949-956.
[9] 刘欢欢, 张有全, 王荣, 等. 京津高铁北京段地面沉降监测及结果分析[J]. 地球物理学报, 2016, 59(7): 2424-2432.
LIU Huanhuan, ZHANG Youquan, WANG Rong, et al. Monitoring and Analysis of Land Subsidence along the Beijing-Tianjin High-speed Railway(Beijing Section)[J]. Chinese Journal of Geophysics, 2016, 59(7): 2424-2432.
[10] 李名语, 李政, 姚京川, 等. 基于ISBAS-InSAR的京雄城际铁路建设期区域沉降监测及气候因子相关性分析[J]. 铁道学报, 2022, 44(11): 71-81.
LI Mingyu, LI Zheng, YAO Jingchuan, et al. ISBAS-InSAR-based Ground Subsidence Monitoring and Climatic Correlation Analysis during Construction Period of Beijing-Xiong'an Intercity Railway[J]. Journal of the China Railway Society, 2022, 44(11): 71-81.
[11] 周越. 典型边坡滑坡地球物理特征与演化机理研究[D]. 长春: 吉林大学, 2021.
ZHOU Yue. Research on Geophysical Characteristics and Evolution Mechanism of Typical Slope Landslides[D]. Changchun: Jilin University, 2021.
[12] 彭冬菊. 边坡地质灾害隐患探测方法研究[D]. 长沙: 中南大学, 2008.
PENG Dongju. Research on Detection Methods of Geological Hazards on Slopes[D]. Changsha: Central South University, 2008.
[13] 魏栋华, 许多, 曹云勇. 识别隐伏岩溶的魏格纳-威尔分布改进方法[J]. 地球物理学进展, 2020, 35(6): 2397-2401.
WEI Donghua, XU Duo, CAO Yunyong. Hidden Karst Identification with Modified Wigner-Ville Distribution Method[J]. Progress in Geophysics, 2020, 35(6): 2397-2401.
[14] 魏栋华. 地震映像高精度时频分析方法在铁路隧底隐伏岩溶识别中的应用研究[J]. 物探化探计算技术, 2023, 45(1): 46-52.
WEI Donghua. Application of Seismic Image High-precision Time-frequency Analysis Method in Identification of Hidden Karst at the Bottom of Railway Tunnel[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2023, 45(1): 46-52.
[15] 唐宇豪, 魏栋华, 索朗, 等. 地震映像法和地质雷达法在铁路隧底岩溶探测中的应用[J]. 工程地球物理学报, 2021, 18(5): 665-670.
TANG Yuhao, WEI Donghua, SUO Lang, et al. Application of Seismic Imaging Method and Ground Penetrating Radar Method in Karst Detection at the Bottom of Railroad Tunnels[J]. Chinese Journal of Engineering Geophysics, 2021, 18(5): 665-670.
[16] 许强. 对地质灾害隐患早期识别相关问题的认识与思考[J]. 武汉大学学报(信息科学版), 2020, 45(11): 1651-1659.
XU Qiang. Understanding and Consideration of Related Issues in Early Identification of Potential Geohazards[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1651-1659.
[17] TB 10005-2010 铁路混凝土结构耐久性设计规范 [S].
TB 10005-2010 Durability Design Code for Railway Concrete Structures [S].
[18] 齐永正, 张航, 马文刚, 等. 复杂工况土质边坡的失稳破坏特征[J]. 科学技术与工程, 2023, 23(14): 6190-6196.
QI Yongzheng, ZHANG Hang, MA Wengang, et al. Characteristics of Soil Slope Collapse under Complex Conditions[J]. Science Technology and Engineering, 2023, 23(14): 6190-6196.
[19] 周孝鑫, 谭钦文, 林志果, 等. 京广铁路K1219路基土质边坡深层滑移失稳机制与整治对策[J]. 地质科技通报, 2022, 41(6): 85-94.
ZHOU Xiaoxin, TAN Qinwen, LIN Zhiguo, et al. Deep Sliding Instability Mechanism and Remediation Measures: The Subgrade Soil Slope along the Jingguang Railway at K1219[J].Bulletin of Geological Science and Technology, 2022, 41(6): 85-94.
[20] 连继峰, 罗强, 蒋良潍, 等. 雨水浸润软化下路基土质边坡浅层稳定分析[J]. 铁道学报, 2017, 39(4): 101-108.
LIAN Jifeng, LUO Qiang, JIANG Liangwei, et al. Stability Analysis of Shallow Soil Slope under Effect of Rainfall Infiltration[J]. Journal of the China Railway Society, 2017, 39(4): 101-108.

相似文献/References:

[1]王 旭.长大干线高速铁路自动化沉降监测系统研究[J].高速铁路技术,2017,8(06):68.[doi:10.12098/j.issn.1674-8247.2017.06.014]
 WANG Xu.Research of Automatic Settlement Monitoring System for Long Trunk High Speed Railway[J].HIGH SPEED RAILWAY TECHNOLOGY,2017,8(05):68.[doi:10.12098/j.issn.1674-8247.2017.06.014]
[2]陈兴海,王朋,于翠翠.鲁南某高速铁路岩溶塌陷风险评估及防治对策[J].高速铁路技术,2022,13(05):79.[doi:10.12098/j.issn.1674-8247.2022.05.016]
 CHEN Xinghai,WANG Peng,YU Cuicui.Risk Assessment and Countermeasures for Karst Collapse of a Highspeed Railway in Southern Shandong[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(05):79.[doi:10.12098/j.issn.1674-8247.2022.05.016]
[3]林奎.成自铁路引入天府机场线路方案比选回顾[J].高速铁路技术,2022,13(05):91.[doi:10.12098/j.issn.1674-8247.2022.05.018]
 LIN Kui.Review of Comparison and Selection of Route Plans for the Connection of the Chengdu-Zigong High-speed Railway to Tianfu Airport[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(05):91.[doi:10.12098/j.issn.1674-8247.2022.05.018]
[4]周宏,宋元胜.高速铁路引入铁路枢纽线路选线研究[J].高速铁路技术,2022,13(05):96.[doi:10.12098/j.issn.1674-8247.2022.05.019]
 ZHOU Hong,SONG Yuansheng.Study on Route Selection for Introducing High-speed Railways into Railway Hubs[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(05):96.[doi:10.12098/j.issn.1674-8247.2022.05.019]
[5]陈 浩.基于动力分析的高速铁路钢轨磨耗预测方法研究[J].高速铁路技术,2022,13(06):17.[doi:10.12098/j.issn.1674-8247.2022.06.004 ]
 CHEN Hao.Study on Prediction Method of Rail Wear of High-speed Railway Based on Dynamic Analysis[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(05):17.[doi:10.12098/j.issn.1674-8247.2022.06.004 ]
[6]董月龙.金建高速铁路大中河流水文计算分析[J].高速铁路技术,2022,13(06):79.[doi:10.12098/j.issn.1674-8247.2022.06.015 ]
 DONG Yuelong.Hydrological Calculation and Analysis of Large and Medium Rivers along Jinhua-Jiande High-speed Railway[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(05):79.[doi:10.12098/j.issn.1674-8247.2022.06.015 ]
[7]王佩雷.复杂艰险山区高速铁路建设四电接口管理技术研究[J].高速铁路技术,2023,14(01):38.[doi:10.12098/j.issn.1674-8247.2023.01.007]
 WANG Peilei.A Study on Interface Management Technology of Communication, Signal,Electrical,and Electrification Systems for High-speed Railway Construction in Challenging Mountain Areas[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(05):38.[doi:10.12098/j.issn.1674-8247.2023.01.007]
[8]戴龙钦,余少华,蔡康.合福高速铁路闽赣段防洪对策分析[J].高速铁路技术,2023,14(01):91.[doi:10.12098/j.issn.1674-8247.2023.01.017]
 DAI Longqin,YU Shaohua,CAI Kang.Analysis of Flood Control Measures for Fujian-Jiangxi Section of Hefei-Fuzhou High-speed Railway[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(05):91.[doi:10.12098/j.issn.1674-8247.2023.01.017]
[9]尹航.沪渝蓉高速铁路(宜涪段)马鹿箐隧道选线研究[J].高速铁路技术,2023,14(01):106.[doi:10.12098/j.issn.1674-8247.2023.01.020]
 YIN Hang.A Study on Route Selection of Maluqing Tunnel of Shanghai-Chongqing-Chengdu High-speed Railway(Yichang-Fuling Section)[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(05):106.[doi:10.12098/j.issn.1674-8247.2023.01.020]
[10]任俊桦.基于类比分析的高速铁路和城际铁路运量预测研究[J].高速铁路技术,2023,14(01):54.[doi:10.12098/j.issn.1674-8247.2023.01.010]
 REN Junhua.A Study on Forecast of Traffic Volume for High-speed Railway and Intercity Railway Based on Analog Analysis[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(05):54.[doi:10.12098/j.issn.1674-8247.2023.01.010]

备注/Memo

备注/Memo:
收稿日期:2023-11-21
作者简介:唐宇豪(1995-),男,工程师。
基金项目:中铁二院工程集团有限责任公司科研基金(KDNQ203001)
更新日期/Last Update: 2024-10-30