[1]李林.基于Copula 函数的青藏铁路多年冻土区路基变形 相关性分析[J].高速铁路技术,2022,13(05):73-78,101.[doi:10.12098/j.issn.1674-8247.2022.05.015]
 LI Lin.Correlation Analysis of Subgrade Deformation of Qinghai-Tibet Railway in Permafrost Regions Based on Copula Function[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(05):73-78,101.[doi:10.12098/j.issn.1674-8247.2022.05.015]
点击复制

基于Copula 函数的青藏铁路多年冻土区路基变形 相关性分析()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
13卷
期数:
2022年05期
页码:
73-78,101
栏目:
研究创新
出版日期:
2022-10-01

文章信息/Info

Title:
Correlation Analysis of Subgrade Deformation of Qinghai-Tibet Railway in Permafrost Regions Based on Copula Function
文章编号:
1674-8247(2022)05-0073-06
作者:
李林
(中铁十二局集团铁路养护工程有限公司, 拉萨 250014)
Author(s):
LI Lin
(Chinese 12th Bureau Group Railway Maintenance Engineering Limited Company ,Lhasa 250014 ,China)
关键词:
铁路路基 相关性 统计分析 冻土 Copula 函数
Keywords:
railway subgradecorrelationstatistical analysispermafrostCopula function
分类号:
U216.41 + 7
DOI:
10.12098/j.issn.1674-8247.2022.05.015
文献标志码:
A
摘要:
为解决青藏铁路多年冻土区路基两侧不规律变形问题,根据青藏高原多年冻土区全线铁路不同路 基类型观测站点路基融沉的长期观测数据,利用箱线图查找异常值的原理分别对其进行异常值检验,再基 于Copula 理论给出了路基两侧变形相关性分析的建模步骤,确定路基两侧变形的相关性结构,并依据不同 Copula 族特征对其进行相关性分析,实现多年冻土区路基两侧变形的主侧方向判定。研究结果表明:(1)不 同路基类型两侧高度的变形呈正相关且相关性极高,说明多年冻土区路基两侧高度变形基本满足一致性; (2)4 组样本数据的最优相关结构为t - Copula,即多年冻土区路基两侧变形具有对称性且上、下尾部相关性较 强的特点;(3)路基两侧的变形模式几乎均等性相依。本文研究成果可为路基进行状态监测和路基养护提供 参考。
Abstract:
In order to solve the problem of irregular deformations on the two sides of the subgrade of Qinghai- Tibet Railway in the permafrost regions,according to the long-term observation data on the thawing settlement of the subgrade in the permafrost regions on Qinghai-Tibet Plateau from observation stations for different types of subgrade along the whole railway,abnormal values were checked according to the principle of using box plots to find abnormal values. Then,the modeling steps for correlation analysis of the deformations on the two sides of the subgrade were given based on Copula Theory to determine the correlation structure of the deformations on the two sides of the subgrade. The correlation analysis was carried out according to the characteristics of different Copula families to judge the main side direction of the deformations on the two sides of the subgrade in permafrost regions. The results show that: (1) The height deformations on the two sides of different types of subgrade are positively and highly correlated. This indicates the height deformations on the two sides of the subgrade in permafrost regions are basically consistent.(2) The optimal correlation structure of the 4groups of sample data is-Copula,that is,the deformations on the two sides of the subgrade in the permafrost area are symmetrical and the upper and lower tails are strongly correlated.(3) The deformation modes on the two sides of the subgrade are almost equally correlated. The research results of this paper can provide a reference for subgrade status monitoring and subgrade maintenance.

参考文献/References:

[1] 周幼吾, 邱国庆, 郭东信, 等. 中国冻土[M]. 北京: 科学出版社, 2000. ZHOU Youwu, Guo Dongxin, Qiu Guoqing, et al. Geocryology in China[M]. Beijing: Science Press, 2000.
[2] 张尧庭. 我们应该选用什么样的相关性指标[J]. 统计研究, 2002, 19(9): 41 - 44. ZHANG Yaoting. What Co-Relative Indicators should we Employ[J]. Statistical Research, 2002, 19(9): 41 - 44.
[3] FREEMAN J R. Granger Causality and the Times Series Analysis of Political Relationships[J]. American Journal of Political Science, 1983, 27(2): 327.
[4] 唐家银, 何平, 陈崇双. 相关性失效机械系统的可靠性分析方法 [M]. 北京: 国防工业出版社, 2014. TANG Jiayin, HE Ping, CHEN Chongshuang. Reliability Analysis Methods for Mechanical System Involving Failure Correlations[M]. Beijing: National Defense Industry Press, 2014.
[5] LI Binghui, ZHANG Jie, HOBBS B F. A Copula Enhanced Convolution for Uncertainty Aggregation[C]// 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference. Washington, DC, USA. IEEE: 1 - 5.
[6] XU Shitian, LIU Chongru, SU Chenbo, et al. Correlation Analysis of Wind and Photovoltaic Power Based on Mixed Copula Theory and Its Application into Optimum Capacity Allocation[C]// 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration. Changsha,China. IEEE: 976 - 980.
[7] CHEN Wen, ZHAO Guangyan. A Multivariate Correlation Degradation Model for Reliability Analysis Based on Copula[C]// 2020 Annual Reliability and Maintainability Symposium( RAMS). Palm Springs, CA, USA. IEEE: 1 - 6.
[8] ZHAO M, WU Z, ZHAO B, et al. Copula-Based Reliability Modelling of Wireless Sensor Networks with Dependent Failures[J]. International Journal of Sensor Networks, 2019, 31(2): 90.
[9] 牛富俊, 林战举, 鲁嘉濠, 等. 青藏铁路路桥过渡段沉降变形影 响因素分析[J]. 岩土力学, 2011, 32(S2): 372 - 377. NIU Fujun, LIN Zhanju, LU Jiahao, et al. Study of the Influencing Factors of Roadbed Settlement in Embankment-Bridge Transition Section along Qinghai-Tibet Railway[J]. Rock and Soil Mechanics, 2011, 32(S2): 372 - 377.
[10] 徐东升. 青藏铁路冻土路基融沉可靠性研究[D]. 兰州: 兰州交 通大学, 2017. XU Dongsheng. Study on the Reliability of Thawing Settlement of Permafrost Roadbed in the Qinghai-Tibet Railway[D]. Lanzhou: Lanzhou Jiatong University, 2017.
[11] 袁莉芬, 朋张胜, 何怡刚. 基于Copula 函数的光纤陀螺贮存可靠 性评估[J]. 电子测量与仪器学报, 2020, 34(8): 58 - 65. YUAN Lifen, PENG Zhangsheng, HE Yigang. Evaluating Storage Reliability of FOG Based on Copula Function[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(8): 58 - 65.
[12] 吴娟. Copula 理论与相关性分析[D]. 武汉: 华中科技大学, 2009. WU Juan. Copula Theory and Dependence Analysis[D]. Wuhan: Huazhong University of Science and Technology, 2009.
[13] Nelsen. R B. An introduction to copula[M]. Second ed. New York: Springer, 2006.
[14] 余平. Copula-ETC 模型及其在投资组合中的应用研究[D]. 重庆: 重庆大学, 2008. Yu Pin. Copula-ETC Model and its Application in Investment Portfolio [D]. Chongqing: Chongqing University, 2008.
[15] 李裕奇, 赵联文,王沁,等. 非参数统计方法[M]. 成都: 西南交 通大学出版社, 2010. LI Yuqi,ZHAO Lianwen,WANG Qin,et al. Non-parametric Statistical Methods[M]. Chengdu: Southwest Jiaotong University Press, 2010.
[16] 李霞. COPULA 方法及其应用[M]. 北京: 经济管理出版社, 2014. LI Xia. Copula Method and its Application[M]. Beijing: Economy & Management Publishing House, 2014.
[17] MUDDAPUR M V. On Directional Dependence in a Regression Line [J]. Communications in Statistics-Theory and Methods, 2003, 32(10): 2053 - 2057.

相似文献/References:

[1]刘 毅,李建强,邹广明.厦门残积土力学性质与标贯N值相关性分析[J].高速铁路技术,2017,8(06):84.[doi:10.12098/j.issn.1674-8247.2017.06.017]
 LIU Yi LI Jianqiang ZOU Guangming.Correlation Analysis between Mechanical Property and SPT Value N of Residual Soil in Xiamen[J].HIGH SPEED RAILWAY TECHNOLOGY,2017,8(05):84.[doi:10.12098/j.issn.1674-8247.2017.06.017]
[2]孔文亚,黎 康,谢 恺.西南山区高速铁路车站桩板结构高填路基动力特性分析[J].高速铁路技术,2022,13(06):6.[doi:10.12098/j.issn.1674-8247.2022.06.002 ]
 KONG Wenya,LI Kang,XIE Kai.Analysis of Dynamic Characteristics of High-fill Subgrade with Pile-slab Structure in High-speed Railway Stations in Southwest Mountainous Area[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(05):6.[doi:10.12098/j.issn.1674-8247.2022.06.002 ]
[3]谢先当,张权,付洋.铁路路基BIM设计系统研究[J].高速铁路技术,2024,15(02):71.[doi:10.12098/j.issn.1674-8247.2024.02.013]
 XIE Xiandang,ZHANG Quan,FU Yang.Study on BIM Design System for Railway Subgrade[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(05):71.[doi:10.12098/j.issn.1674-8247.2024.02.013]

备注/Memo

备注/Memo:
收稿日期:2021 -11 -10
作者简介:李林(1978 -),男,工程师。
更新日期/Last Update: 2022-10-01