[1]周 琛.基于Elman神经网络的轨道交通工程投标报价预测研究[J].高速铁路技术,2025,(02):94-98.[doi:10.12098/j.issn.1674-8247.2025.02.015]
 ZHOU Chen.Research on Bid Price Prediction for Rail Transit Projects Based on Elman Neural Network[J].HIGH SPEED RAILWAY TECHNOLOGY,2025,(02):94-98.[doi:10.12098/j.issn.1674-8247.2025.02.015]
点击复制

基于Elman神经网络的轨道交通工程投标报价预测研究()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
期数:
2025年02期
页码:
94-98
栏目:
研究创新
出版日期:
2025-04-20

文章信息/Info

Title:
Research on Bid Price Prediction for Rail Transit Projects Based on Elman Neural Network
文章编号:
1674-8247(2025)02-0094-05
作者:
周 琛
(中铁二院工程集团有限责任公司, 成都 610031)
Author(s):
ZHOU Chen
(China Railway Eryuan Engineering Group Co., Ltd., Chengdu 610031, China)
关键词:
轨道交通 投标报价 Elman神经网络
Keywords:
rail transit bid price Elman neural network
分类号:
TU723.2
DOI:
10.12098/j.issn.1674-8247.2025.02.015
文献标志码:
A
摘要:
企业参与轨道交通项目的投标时需要承担一定的成本,因此如何制定合理的报价策略以提高中标率,成为投标企业关注的核心问题。本文基于Elman神经网络构建轨道交通投标报价预测模型,并通过实证检验其有效性。研究结果表明,与BP神经网络相比,Elman神经网络模型应用于投标报价预测中的性能显著提升,MAE降低了13.98,RMSE减少了18,MAPE降低了0.84。研究成果可以为企业参与轨道交通工程投标报价提供一定参考。
Abstract:
Bidding for rail transit projects incurs certain costs for enterprises. Therefore, how bidding enterprises set their bid prices to increase their winning rates has become a core concern for all participants. This paper constructed a prediction model for rail transit bid prices based on the Elman neural network and empirically tested its effectiveness. The research results indicate that when the Elman neural network model is applied to bid price prediction, it exhibits improvements compared to the BP neural network, with reductions of 13.98 in MAE, 18 in RMSE, and 0.84 in MAPE. The research findings can provide a reference for enterprises participating in bid price setting for urban rail transit projects.

参考文献/References:

[1] 黄素玲. 关于轨道交通工程的投标策略与报价技巧探究[J]. 门窗, 2024(6): 142-144.
HUANG Suling. Discussion on Bidding Strategy and Bidding Skills of Rail Transit Project[J]. Doors & Windows, 2024(6): 142-144.
[2] 牛蕾. 城市轨道交通工程投标报价的合理确定与风险控制分析[J]. 工程技术, 2022(9): 227-229.
NIU Lei. Reasonable Determination and Risk Control Analysis of Bidding Quotation for Urban Rail Transit Engineering[J]. Engineering Technology, 2022(9): 227-229.
[3] 张颖平. 浅谈单线铁路隧道进度与成本控制[J]. 高速铁路技术, 2022, 13(2): 62-66.
ZHANG Yingping. A Discussion on Progress and Cost Control for Single-track Railway Tunnels[J]. High Speed Railway Technology, 2022, 13(2): 62-66.
[4] 章依卿. 城市轨道交通工程投标阶段造价管理的风险因素探析[J]. 商讯, 2023(17): 181-184.
ZHANG Yiqing. Analysis on Risk Factors of Cost Management in Bidding Stage of Urban Rail Transit Project [J]. Corporate Finance, 2023(17): 181-184.
[5] 孙旺青, 刘晓峰, 何沁蔓. 基于相似月和Elman神经网络的行业月度售电量预测[J]. 电力需求侧管理, 2022, 24(4): 53-58.
SUN Wangqing, LIU Xiaofeng, HE Qinman. Monthly Electricity Sales Forecasting of Different Industries Based on Similar Month and Elman Neural Network Model[J]. Power Demand Side Management, 2022, 24(4): 53-58.
[6] 梁益丰, 许江宁, 吴苗. 基于粒子群算法优化Elman神经网络的GPS快速钟差预报方法[J]. 海军工程大学学报, 2022, 34(6): 41-47.
LIANG Yifeng, XU Jiangning, WU Miao. Elman Neural Network Based on Particle Swarm Optimization for Prediction of GPS Rapid Clock Bias[J]. Journal of Naval University of Engineering, 2022, 34(6): 41-47.
[7] 杨飞, 张云娇, 范丁元. 基于改进马尔科夫模型的铁路客运量预测研究[J]. 高速铁路技术, 2023, 14(5): 45-50.
YANG Fei, ZHANG Yunjiao, FAN Dingyuan. A Study on Railway Passenger Volume Forecast Based on Improved Markov Model[J]. High Speed Railway Technology, 2023, 14(5): 45-50.

相似文献/References:

[1]方宜,卓建成,杜梦飞.数字孪生在轨道交通智能建造业中的应用发展[J].高速铁路技术,2024,15(01):68.[doi:10.12098/j.issn.1674-8247.2024.01.013]
 FANG Yi,ZHUO Jiancheng,DU Mengfei.Application and Development of Digital Twin in Intelligent Construction of Rail Transit[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(02):68.[doi:10.12098/j.issn.1674-8247.2024.01.013]
[2]谭彬,刘永欣.粤港澳大湾区轨道交通互联互通标准判识研究[J].高速铁路技术,2024,15(03):1.[doi:10.12098/j.issn.1674-8247.2024.03.001]
 TAN Bin,LIU Yongxin.Study on the Standard Identification for Interconnectivity of Rail Transit in the Guangdong-Hong Kong-Macao Greater Bay Area[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(02):1.[doi:10.12098/j.issn.1674-8247.2024.03.001]
[3]王若昆,黄克勇,邱 鹏,等.基于PageRank的交路选择算法研究[J].高速铁路技术,2024,15(05):87.[doi:10.12098/j.issn.1674-8247.2024.05.015]
 WANG Ruokun,HUANG Keyong,QIU Peng,et al.Study on Route Selection Algorithm Based on PageRank[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(02):87.[doi:10.12098/j.issn.1674-8247.2024.05.015]

备注/Memo

备注/Memo:
收稿日期:2024-07-16
作者简介:周琛(1989-),女,工程师。
更新日期/Last Update: 2025-04-20