[1]臧传臻.400km/h高速铁路小半径曲线地段橡胶浮置板轨道参数优化研究[J].高速铁路技术,2024,15(01):29-34,52.[doi:10.12098/j.issn.1674-8247.2024.01.006]
 ZANG Chuanzhen.Study on Optimization of Track Parameters for Rubber Floating Slab in Small Radius Curved Section of 400 km/h High-speed Railway[J].HIGH SPEED RAILWAY TECHNOLOGY,2024,15(01):29-34,52.[doi:10.12098/j.issn.1674-8247.2024.01.006]
点击复制

400km/h高速铁路小半径曲线地段橡胶浮置板轨道参数优化研究()
分享到:

《高速铁路技术》[ISSN:1674-8247/CN:51-1730/U]

卷:
15卷
期数:
2024年01期
页码:
29-34,52
栏目:
出版日期:
2024-03-20

文章信息/Info

Title:
Study on Optimization of Track Parameters for Rubber Floating Slab in Small Radius Curved Section of 400 km/h High-speed Railway
文章编号:
1674-8247(2024)01-0029-06
作者:
臧传臻
中国铁路设计集团有限公司,天津 300308
Author(s):
ZANG Chuanzhen
China Railway Design Corporation ,Tianjin 300308 ,China
关键词:
高速铁路橡胶浮置板轨道小半径曲线插入损失
Keywords:
high-speed railwayrubber floating slab tracksmall radius curveinsertion loss
分类号:
U213.2+12
DOI:
10.12098/j.issn.1674-8247.2024.01.006
文献标志码:
A
摘要:
为了研究400km/h高速铁路列车经过小半径曲线地段时的动力响应特性,建立小半径曲线地段CRH380B车辆-轨道动力学模型,结合列车实测数据验证模型的准确性,随后模拟列车以400km/h速度通过7000m半径曲线路段的动力响应。结果表明:(1)相较于非减振轨道地段,当橡胶浮置板轨道的减振垫铺设刚度为0.019N/mm3、0.033N/mm3、0.042N/mm3、0.1N/mm3时,轨道减振效果分别为13.4dB、13.4dB、12.5dB、8.6dB;(2)道床板厚度、减振垫刚度的建议取值分别为300mm、0.03N/mm3。研究成果可为400km/h高速铁路橡胶浮置板轨道结构设计提供理论依据。
Abstract:
In order to study the dynamic response characteristics of 400 km/h high-speed train when passing through a small radius curve,a vehicle-track dynamics model of the CRH380B train on section with small radius curve was established. The model’s accuracy was verified with actual measured data from the train. Subsequently,simulations were conducted to predict the dynamic response of the train while traversing a curve with a 7 000 m radius at the speed of 400 km/h. The results showed that:(1)Compared to a track section without damping,the vibration reduction effect of the rubber floating slab track with damping pads at stiffness levels of 0. 019 N/mm3,0. 033 N/mm3,0. 042 N/mm3, and 0. 1 N/mm3 were 13. 4 dB,13. 4 dB,12. 5 dB,and 8. 6 dB,respectively. (2)The recommended values for the slab thickness and damping pad stiffness are 300 mm and 0. 03 N/mm3,respectively. The conclusions provide a theoretical basis for the design of rubber floating slab track structures for 400 km/h high-speed railways.

参考文献/References:

[1] 翟婉明. 车辆-轨道耦合动力学 [M]. 4版. 北京:科学出版社, 2015. ZHAI Wanming. Vehicle-track Coupled Dynamics[M]. 4th ed. Beijing:Science Press,2015.
[2] 杨吉忠,谢毅,庞玲,等. 400 km/h高速铁路轨道几何不平顺敏感波长分析[J]. 高速铁路技术,2021,12(2):50-55,114. YANG Jizhong,XIE Yi,PANG Ling,et al. Sensitive Wavelength Analysis on Track Geometric Irregularities of 400 km/h High-speed Railway[J]. High Speed Railway Technology,2021,12(2):50-55,114.
[3] KARIS T,BERG M,STICHEL S,et al. Correlation of Track Irregularities and Vehicle Responses Based on Measured Data[J]. Vehicle System Dynamics,2018,56(6):967-981.
[4] XIN Tao,WANG Pengsong,DING Yu. Effect of Long-wavelength Track Irregularities on Vehicle Dynamic Responses[J]. Shock and Vibration,2019,2019 :1-11.
[5] 练松良,黄俊飞. 客货共运线路轨道不平顺不利波长的分析研究[J]. 铁道学报,2004,26(2):111-115. LIAN Songliang,HUANG Junfei. Study of the Detrimental Wavelengths of Track Irregularities for Railways with Passenger and Freight Traffic [J]. Journal of the China Railway Society,2004, 26(2):111-115.
[6] 高建敏,翟婉明,王开云. 高速行车条件下轨道几何不平顺敏感波长研究[J]. 铁道学报,2012,34(7):83-88. GAO Jianmin,ZHAI Wanming,WANG Kaiyun. Study on Sensitive Wavelengths of Track Irregularities in High-speed Operation[J]. Journal of the China Railway Society,2012,34(7):83-88.
[7] 杨飞,黎国清,刘金朝. 时速300~350 km高速铁路轨道不平顺管理波长研究[J]. 铁道建筑,2013,53(1):86-90. YANG Fei,LI Guoqing,LIU Jinzhao. Study on Management Wavelength of Track Irregularity of High-speed Railway with Speed of 300~350 km/h[J]. Railway Engineering,2013,53(1):86-90.
[8] 徐金辉,王平,汪力,等. 轨道高低不平顺敏感波长的分布特征及其影响因素的研究[J]. 铁道学报,2015,37(7):72-78. XU Jinhui,WANG Ping,WANG Li,et al. Research on the Distribution Characteristics and Influence Factors of Sensitive Wavelength of Track Vertical Profile Irregularity[J]. Journal of the China Railway Society,2015,37(7):72-78.
[9] 袁玄成,王开云,閤鑫,等. 轨道不平顺波长和幅值对高速动车组
[10]芦睿泉,练松良. 轨道复合不平顺对提速列车运行影响的研究[J]. 铁道科学与工程学报,2005,2(5):17-22.LU Ruiquan,LIAN Songliang. Research of the Effect of Track Complex Irregularities on the Vehicle Dynamic Response[J]. Journal of Railway Science and Engineering,2005,2(5):17-22.
[11]GB/T 5599 - 2019 《机车车辆动力学性能评定及试验鉴定规范》[S]. GB/T 5599 - 2019 Specification for Dynamic Performance Assessment and Testing Verification of Rolling Stock [S].
[12]TB 10621 - 2014高速铁路设计规范 [S]. TB 10621 - 2014 Code for Design of High Speed Railway [S].

相似文献/References:

[1]王 旭.长大干线高速铁路自动化沉降监测系统研究[J].高速铁路技术,2017,8(06):68.[doi:10.12098/j.issn.1674-8247.2017.06.014]
 WANG Xu.Research of Automatic Settlement Monitoring System for Long Trunk High Speed Railway[J].HIGH SPEED RAILWAY TECHNOLOGY,2017,8(01):68.[doi:10.12098/j.issn.1674-8247.2017.06.014]
[2]陈兴海,王朋,于翠翠.鲁南某高速铁路岩溶塌陷风险评估及防治对策[J].高速铁路技术,2022,13(05):79.[doi:10.12098/j.issn.1674-8247.2022.05.016]
 CHEN Xinghai,WANG Peng,YU Cuicui.Risk Assessment and Countermeasures for Karst Collapse of a Highspeed Railway in Southern Shandong[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(01):79.[doi:10.12098/j.issn.1674-8247.2022.05.016]
[3]林奎.成自铁路引入天府机场线路方案比选回顾[J].高速铁路技术,2022,13(05):91.[doi:10.12098/j.issn.1674-8247.2022.05.018]
 LIN Kui.Review of Comparison and Selection of Route Plans for the Connection of the Chengdu-Zigong High-speed Railway to Tianfu Airport[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(01):91.[doi:10.12098/j.issn.1674-8247.2022.05.018]
[4]周宏,宋元胜.高速铁路引入铁路枢纽线路选线研究[J].高速铁路技术,2022,13(05):96.[doi:10.12098/j.issn.1674-8247.2022.05.019]
 ZHOU Hong,SONG Yuansheng.Study on Route Selection for Introducing High-speed Railways into Railway Hubs[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(01):96.[doi:10.12098/j.issn.1674-8247.2022.05.019]
[5]陈 浩.基于动力分析的高速铁路钢轨磨耗预测方法研究[J].高速铁路技术,2022,13(06):17.[doi:10.12098/j.issn.1674-8247.2022.06.004 ]
 CHEN Hao.Study on Prediction Method of Rail Wear of High-speed Railway Based on Dynamic Analysis[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(01):17.[doi:10.12098/j.issn.1674-8247.2022.06.004 ]
[6]董月龙.金建高速铁路大中河流水文计算分析[J].高速铁路技术,2022,13(06):79.[doi:10.12098/j.issn.1674-8247.2022.06.015 ]
 DONG Yuelong.Hydrological Calculation and Analysis of Large and Medium Rivers along Jinhua-Jiande High-speed Railway[J].HIGH SPEED RAILWAY TECHNOLOGY,2022,13(01):79.[doi:10.12098/j.issn.1674-8247.2022.06.015 ]
[7]王佩雷.复杂艰险山区高速铁路建设四电接口管理技术研究[J].高速铁路技术,2023,14(01):38.[doi:10.12098/j.issn.1674-8247.2023.01.007]
 WANG Peilei.A Study on Interface Management Technology of Communication, Signal,Electrical,and Electrification Systems for High-speed Railway Construction in Challenging Mountain Areas[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(01):38.[doi:10.12098/j.issn.1674-8247.2023.01.007]
[8]戴龙钦,余少华,蔡康.合福高速铁路闽赣段防洪对策分析[J].高速铁路技术,2023,14(01):91.[doi:10.12098/j.issn.1674-8247.2023.01.017]
 DAI Longqin,YU Shaohua,CAI Kang.Analysis of Flood Control Measures for Fujian-Jiangxi Section of Hefei-Fuzhou High-speed Railway[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(01):91.[doi:10.12098/j.issn.1674-8247.2023.01.017]
[9]尹航.沪渝蓉高速铁路(宜涪段)马鹿箐隧道选线研究[J].高速铁路技术,2023,14(01):106.[doi:10.12098/j.issn.1674-8247.2023.01.020]
 YIN Hang.A Study on Route Selection of Maluqing Tunnel of Shanghai-Chongqing-Chengdu High-speed Railway(Yichang-Fuling Section)[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(01):106.[doi:10.12098/j.issn.1674-8247.2023.01.020]
[10]任俊桦.基于类比分析的高速铁路和城际铁路运量预测研究[J].高速铁路技术,2023,14(01):54.[doi:10.12098/j.issn.1674-8247.2023.01.010]
 REN Junhua.A Study on Forecast of Traffic Volume for High-speed Railway and Intercity Railway Based on Analog Analysis[J].HIGH SPEED RAILWAY TECHNOLOGY,2023,14(01):54.[doi:10.12098/j.issn.1674-8247.2023.01.010]

备注/Memo

备注/Memo:
收稿日期:2023-11-06
作者简介:臧传臻(1990-),男,高级工程师。
基金项目:国家重点研发计划项目(2022YFB2603400),中国铁路设计集团有限公司科技开发课题(2021A240101;2022BXZ005)
更新日期/Last Update: 2024-03-20